The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Cancer stemness, which covers the stem cell-like molecular traits of cancer cells, is essential for tumor development, progression and relapse. Both transcriptional and epigenetic aberrations are essentially connected with cancer stemness. The engagement of bromodomain (BrD) proteins-a family of epigenetic factors-has been presented in the pathogenesis of several tumor types, although their association with cancer stemness remains largely unknown. Here, we harnessed TCGA and GEO databases and used several bioinformatic tools (ie, Oncomine, PrognoScan, GEPIA2, TIMER2.0, TISIDB, GSEA, R2 platform) to characterize the association between the BrD family members' expression and cancer stemness in solid tumors. Our results demonstrate that significant upregulation of ATAD2 and SMARCA4, and downregulation of SMARCA2 is consistently associated with enriched cancer stem cell-like phenotype, respectively. Especially, higher-grade tumors that display stem cell-like properties overexpress ATAD2. In contrast to most BrD members, the gene expression profiles of ATAD2 HIGH expressing tumors are strongly enriched with known markers of stem cells and with specific targets for c-Myc transcription factor.For other BrD proteins, the association with cancer de-differentiation status is rather tumor-specific. Our results demonstrate for the first time the relation between distinct BrD family proteins and cancer stemness across 27 solid tumor types. Specifically, our approach allowed us to discover a robust association of high ATAD2 expression with cancer stemness and reveal its' versatility in tumors.
Cells and immune cells in the extracellular matrix: Depending on the tumor type and variety of TAAs (tumor-associated antigens), immune infiltrates are composed of many different subpopulations of immune cells. Epigenetic changes are also considered to be characteristic of cancer. Epigenetic factors taking part in the regulation of gene expression include the VII group of bromodomain proteins (BrD)—SP-family proteins. Here, we used transcriptomic data from the TCGA database, as well as immunological evidence from ESTIMATE, TIP, and TIMER2.0 databases for various solid tumor types and harnessed several publicly available bioinformatic tools (such as GSEA and GSCA) to demonstrate mechanisms and interactions between BrD proteins and immune infiltrates in cancer. We present a consistently positive correlation between the SP-family genes and immune score regardless of the tumor type. The SP-family proteins correlate positively with T cells’ trafficking and infiltration into tumor. Our results also show an association between the high expression of SP family genes and enriched transcriptome profiles of inflammatory response and TNF-α signaling via NF-κβ. We also show that the SP-family proteins could be considered good predictors of high immune infiltration phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.