Dendrimers are a relatively new and still not fully examined group of polybranched polymers. In this study polyamidoamine dendrimers with hydroxyl surface groups (PAMAM-OH) of third, fourth and fifth generation (G3, G4 and G5) were examined for their ability to influence the activity of human erythrocyte plasma membrane adenosinetriphosphatases (ATPases). Plasma membrane ATPases are a group of enzymes related, among others, to the maintenance of ionic balance inside the cell. An inhibition of their activity may result in a disturbance of cell functioning. Two of examined dendrimers (G4 and G5) were found to inhibit the activity of Na(+)/K(+) ATPase and Ca(2+) ATPase by 20-30%. The observed effect was diminished when higher concentrations of dendrimers were used. The experiment with the use of pyrene as fluorescent probe sensitive to the changes in microenvironment's polarity revealed that it was an effect of dendrimers' self-aggregation. Additional studies showed that PAMAM-OH dendrimers were able to decrease the fluidity of human erythrocytes plasma membrane. Obtained results suggest that change in plasma membrane fluidity was not caused by the dendrimer-lipid interaction, but dendrimer-protein interaction. Different pattern of influence of dendrimers on ATPases activity and erythrocyte membrane fluidity suggests that observed change in ATPases activity is not a result of dendrimer-lipid interaction, but may be related to direct interaction between dendrimers and ATPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.