The aim of the present study was to determine whether post-emergence application of glufosinate to transgenic crops could lead to an increase in residues or to the formation of new, hitherto unknown metabolites. Transgenic oilseed rape and maize plants were treated separately with L-glufosinate, D-glufosinate or the racemic mixture. Whereas about 90% of the applied D-glufosinate was washed off by rain and only 5-6% was metabolised, 13-35% of the applied L-glufosinate remained in the form of metabolites and unchanged herbicide in both transgenic maize and oilseed rape. The main metabolite was N-acetyl-L-glufosinate with total residues of 91% in oilseed rape and 67% in maize, together with small amounts, of 5% in oilseed rape and 28% in maize, of different methylphosphinyl fatty acids. These metabolites were probably formed from L-glufosinate by deamination and subsequent decarboxylation. The residues were distributed in all fractions of the plants, with the highest contents in treated leaves and the lowest in the grains (0.07-0.3% in maize and 0.4-0.6% in oilseed rape). There was no indication of an accumulation of total residues or of residue levels above the official tolerances for glufosinate.
Ochratoxin A, one of the most toxic mycotoxins, can be metabolized nearly completely by suspension cultures of various plant cells. The transformation products identified in this study were almost the same in the cell-suspension cultures of maize, carrot, tomato, potato, soybean, wheat and barley, but the quantitative distribution differed strongly depending on incubation time and species of plant-cell culture. The compounds were extracted with ethyl acetate and detected by reversed-phase HPLC with gradient elution. From the result it is supposed that besides ochratoxin A also ochratoxin derivatives may occur in food and feedstuff of plant origin.
The metabolism of the mycotoxin ochratoxin A in plant cells was investigated using cell suspension cultures of wheat and maize. A number of metabolites were detected by HPLC‐chromatography with fluorescence detection The main metabolites were ochratoxin α, ochratoxin A methyl ester, two isomers of hydroxyochratoxin A, and the glucosides and methyl esters of both hydroxyochratoxin A isomers. The compounds were isolated by TLC and preparative HPLC and identified by mass spectrometry and specific enzymic reactions c̊ 1997 Wiley‐Liss, Inc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.