The concept of the Marine Autonomous Surface Ship (MASS) requires new solutions in many areas: from law, through economics, social sciences, environmental issues to the technology and even ethics. It also plays a central role in the work of numerous research teams dealing with the ship motion control systems. This article presents the results of the experiments with application of the selected control methods in automatic steering of the movement of an autonomous ship in the two regimes: during the maneuvers at low speed (in a harbor confined waters) and during the lake trials in open water conditions. In the first case, multidimensional state controller synthesized with Linear Matrix Inequalities (LMI) algorithms was used, while, in the second case, Model Predictive Control (MPC) control was adopted. The object for which the experiments were carried out was 1:24 scale model of the Liquefied Natural Gas (LNG) carrier. The paper presents also the design of the measurement and control system and the user interface. The experiments were conducted in the natural conditions on the lake. The results of the experiments indicate the fundamental role of the measurement system in the process of controlling an autonomous ship.
The article described two full multidimensional controllers applied to steer a real vessel named ‘Blue Lady’ that is used by the Foundation for Safety of Navigation and Environment Protection at its training and research facility loacted at Silm lake in Poland. Both controllers were based on different approaches, but finally gave similar results. The first part describes the object to be controlled which is a training ship used for training of navigators in various conditions, areas and manoeuvres. This is followed by a short description of the theory for both controllers, Robust and Linear Matrix Inequalities (LMI). Next real time trials are described, which are 3 different manouvers for low velocities, executed by both LMI and Robust contrllers. In these trials ‘Blue Lady’ velocities, silhouete trajectory ans wind data are recorded. Finally the quality of work for both controllers is collected in two tables.
This paper presents the influence of a first stage inertial element on the operation of a state space controller for a third dimension object. First chapter presents a brief introduction to linear matrix inequalities as one of the methods of controller analysis and synthesis, with examples, and helps to places the below paper in this wide field of science. Chapter two presents the controlled object, which is a model of a very large crude carrier (VLCC) ship, called Blue Lady, along with its mathematical state space model. Chapter three shows state space controller design using numerical methods of linear equalities optimization, where the given values are u longitudinal, v lateral and r rotational velocities. Presented there is also the implementation method of an inertial element to a multidimensional object for space state controller synthesis. Chapter four shows computer simulation results and focuses on showing influence of the proposed design on control error of the multidimensional closed loop system. Finally, chapter five concludes and comments simulation results and shows possible direction of future studies. ARTICLE HISTORY
This paper explains the basics of the Linear Matrix Inequalities (LMI), with examples of simulations and calculations created in Matlab/Simulink programming environment where the controlled plant is the “Blue Lady” ship model. First chapter of this paper gives a short overview of publications describing the use of Linear Matrix Inequalities method. Second chapter contains basic definitions and equations for the LMI method. Chapter three presents the use of LMI method for ship control by describing controller synthesis for the “Blue Lady”. Chapter four compares the operation of two controllers, the first one consisting of three independent proper adjusted PID controllers and the second one being a multivariable LMI controller. Finally conclusions from the above comparison are drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.