Etravirine is a next-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) developed for the treatment of HIV-1 infection. It has a high genetic barrier to the emergence of viral resistance, and maintains its antiviral activity in the presence of common NNRTI mutations. The pharmacokinetics of etravirine in HIV-infected patients at the recommended dosage of 200 mg twice daily demonstrates moderate intersubject variability and no time dependency. Due to substantially lower exposures when taken on an empty stomach, etravirine should be administered following a meal. The drug is highly protein bound (99.9%) to albumin and alpha(1)-acid glycoprotein and shows a relatively long elimination half-life of 30-40 hours. Etravirine is metabolized by cytochrome P450 (CYP) 3A, 2C9 and 2C19; the metabolites are subsequently glucuronidated by uridine diphosphate glucuronosyltransferase. Renal elimination of etravirine is negligible. Etravirine has the potential for interactions by inducing CYP3A and inhibiting CYP2C9 and 2C19; it is a mild inhibitor of P-glycoprotein but not a substrate. The drug interaction profile of etravirine has been well characterized and is manageable. No dosage adjustments are needed in patients with renal impairment or mild to moderate hepatic impairment. Race, sex, bodyweight and age do not affect the pharmacokinetics of etravirine. In the two phase III trials DUET-1 and DUET-2, no relationship was demonstrated between the pharmacokinetics of etravirine and the primary efficacy endpoint of viral load below 50 copies/mL or the safety profile of etravirine.
The pharmacokinetics and pharmacodynamics of the antiretroviral agent etravirine were evaluated in two phase III clinical trials. Pharmacokinetic data were available in 577 patients randomized to receive etravirine. The mean (SD) population-pharmacokinetics-derived area under the concentration-time curve at 12 h (AUC(12 h)) and concentration at 0 h (C(0 h)) were 5,501 (4,544) ng·h/ml and 393 (378) ng/ml, respectively. Hepatitis C coinfection raised etravarine exposure, and concomitant use of tenofovir disoproxil fumarate lowered etravirine exposure, but these changes were not considered clinically relevant. Etravirine apparent oral clearance was not affected by age, weight, sex, race, hepatitis B coinfection status, creatinine clearance, or concomitant use of enfuvirtide. Virologic response (<50 copies/ml) at week 24 was 59% in patients randomized to etravirine vs. 41% in those receiving placebo (P < 0.0001). There was no apparent relationship between etravirine pharmacokinetics and either efficacy or safety. Factors other than the pharmacokinetics of etravirine such as the characteristics of the patients and the disease, as well as characteristics of the treatment regimen, predict virologic response.
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT• Drug-drug interactions with acid-suppressing agents were previously described with several other antiretroviral drugs.• Etravirine (TMC125) is a next-generation non-nucleoside reverse transcriptase inhibitor, metabolized by CYP3A and CYP2C enzymes with demonstrated efficacy in treatment-experienced HIV-infected patients.• The effect of acid-suppressing agents on the pharmacokinetics of etravirine was unknown. WHAT THIS STUDY ADDS• No clinically relevant effect was shown on the pharmacokinetics of etravirine when co-administered with ranitidine or omeprazole, drugs that increase gastric pH.• A drug-drug interaction due to CYP2C19 inhibition by omeprazole has been identified.• Etravirine can be co-administered with proton pump inhibitors and H2 antagonists without dose adjustments. AimsEtravirine is a next-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against wild-type and NNRTI-resistant HIV. Proton pump inhibitors and H2-antagonists are frequently used in the HIV-negative-infected population, and drug-drug interactions have been described with other antiretrovirals. This study evaluated the effect of steady-state omeprazole and ranitidine on the pharmacokinetics of a single dose of etravirine. MethodsIn an open-label, randomized, one-way, three-period crossover trial, HIV-negative volunteers randomly received a single dose of 100 mg etravirine alone (treatment A); 11 days of 150 mg ranitidine b.i.d. (treatment B); and 11 days of 40 mg omeprazole q.d. (treatment C). A single dose of 100 mg etravirine was co-administered on day 8 of sessions 2 and 3. Each session was separated by a 14-day wash-out. ResultsNineteen volunteers (seven female) participated. When a single dose of etravirine was administered in the presence of steady-state ranitidine, etravirine least squares means ratios (90% confidence interval) for AUClast and Cmax were 0.86 (0.76, 0.97) and 0.94 (0.75, 1.17), respectively, compared with administration of etravirine alone. When administered with steady-state omeprazole, these values were 1.41 (1.22, 1.62) and 1.17 (0.96, 1.43), respectively. Co-administration of a single dose of etravirine and ranitidine or omeprazole was generally safe and well tolerated. ConclusionsRanitidine slightly decreased etravirine exposure, whereas omeprazole increased it by approximately 41%. The increased exposure of etravirine when co-administered with omeprazole is attributed to CYP2C19 inhibition. Considering the favourable safety profile of etravirine, these changes are not clinically relevant. Etravirine can be co-administered with proton pump inhibitors and H2 antagonists without dose adjustments.
Etravirine (formerly TMC125) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against wild-type and NNRTI-resistant strains of HIV-1. Etravirine has been approved in several countries for use as part of highly active antiretroviral therapy in treatment-experienced patients. In vivo, etravirine is a substrate for, and weak inducer of, the hepatic cytochrome P450 (CYP) isoenzyme 3A4 and a substrate and weak inhibitor of CYP2C9 and CYP2C19. Etravirine is also a weak inhibitor of P-glycoprotein. An extensive drug-drug interaction programme in HIV-negative subjects has been carried out to assess the potential for pharmacokinetic interactions between etravirine and a variety of non-antiretroviral drugs. Effects of atorvastatin, clarithromycin, methadone, omeprazole, oral contraceptives, paroxetine, ranitidine and sildenafil on the pharmacokinetic disposition of etravirine were of no clinical relevance. Likewise, etravirine had no clinically significant effect on the pharmacokinetics of fluconazole, methadone, oral contraceptives, paroxetine or voriconazole. No clinically relevant interactions are expected between etravirine and azithromycin or ribavirin, therefore, etravirine can be combined with these agents without dose adjustment. Fluconazole and voriconazole increased etravirine exposure 1.9- and 1.4-fold, respectively, in healthy subjects, however, no increase in the incidence of adverse effects was observed in patients receiving etravirine and fluconazole during clinical trials, therefore, etravirine can be combined with these antifungals although caution is advised. Digoxin plasma exposure was slightly increased when co-administered with etravirine. No dose adjustments of digoxin are needed when used in combination with etravirine, however, it is recommended that digoxin levels should be monitored. Caution should be exercised in combining rifabutin with etravirine in the presence of certain boosted HIV protease inhibitors due to the risk of decreased exposure to etravirine. Although adjustments to the dose of clarithromycin are unnecessary for the treatment of most infections, the use of an alternative macrolide (e.g. azithromycin) is recommended for the treatment of Mycobacterium avium complex infection since the overall activity of clarithromycin against this pathogen may be altered when co-administered with etravirine. Dosage adjustments based on clinical response are recommended for clopidogrel, HMG-CoA reductase inhibitors (e.g. atorvastatin) and for phosphodiesterase type-5 inhibitors (e.g. sildenafil) because changes in the exposure of these medications in the presence of co-administered etravirine may occur. When co-administered with etravirine, a dose reduction or alternative to diazepam is recommended. When combining etravirine with warfarin, the international normalized ratio (INR) should be monitored. Systemic dexamethasone should be co-administered with caution, or an alternative to dexamethasone be found as dexamethasone induces CYP3A4. Caution is also warranted when co-adm...
Etravirine is an effective and well-tolerated recently approved non-nucleoside reverse transcriptase inhibitor (NNRTI) for HIV type-1-infected patients with previous antiretroviral treatment experience. Considering the importance of combining antiretrovirals for their optimal use in treating HIV, a number of drug-drug interactions with etravirine and other antiretrovirals have been evaluated. Etravirine is a weak inducer of cytochrome P450 (CYP)3A and a weak inhibitor of CYP2C9/CYP2C19 and P-glycoprotein, and although etravirine is metabolized by the CYP enzyme system, the extent of clinically relevant interactions with other antiretrovirals is limited. Etravirine can be combined with all currently available nucleoside/nucleotide reverse transcriptase inhibitors without dose adjustments, but not with other NNRTIs. Available data indicate that etravirine can be coadministered with most of the currently available ritonavir-boosted HIV protease inhibitors. Coadministration with tipranavir/ritonavir or unboosted HIV protease inhibitors is not recommended because of clinically relevant changes in exposure to etravirine or the coadministered HIV protease inhibitor, respectively. Etravirine can be coadministered with the integrase inhibitors elvitegravir/ritonavir or raltegravir, and with the fusion inhibitor enfuvirtide, without dose adjustments. Dose adjustment of the C-C chemokine receptor type-5 antagonist maraviroc is required, with the type of adjustment depending on whether a boosted HIV protease inhibitor is included in the regimen. In conclusion, etravirine can be combined with most antiretrovirals, with no clinically meaningful effect on drug exposure or safety/tolerability profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.