The human placenta plays a crucial role as the interface between mother and fetus. It represents a unique tissue that undergoes morphological as well as functional changes on the cellular and tissue level throughout pregnancy. To better understand how the placenta works, a variety of techniques has been developed to re-create this complex physiological barrier in vitro. However, due to the low availability of freshly isolated primary cells, choriocarcinoma cell lines remain the usual suspects as in vitro models for placental research. Here, we present a comparative study on the functional aspects of the choriocarcinoma cell lines BeWo, JAR and Jeg-3, as well as the first trimester trophoblast cell line ACH-3P as placental in vitro barrier models for endocrine and transport studies. Functional assays including tight junction immunostaining, sodium fluorescein retardation, trans epithelial resistance, glucose transport, hormone secretion as well as size-dependent polystyrene nanoparticle transport were performed using the four cell types to evaluate key functional parameters of each cell line to act a relevant in vitro placental barrier model.
During the first trimester of pregnancy, extravillous trophoblasts (EVTs) invade into the decidual interstitium to the first third of the myometrium, thereby anchoring the placenta to the uterus. They also follow the endovascular and endoglandular route of invasion; plug, line and remodel spiral arteries, thus being responsible for the establishment of hemotrophic nutrition with the beginning of the second trimester and invade and open uterine glands toward the intervillous space for a histiotrophic nutrition during the first trimester. The aim of this study was to provide proof that uterine veins are invaded by EVTs similar to uterine arteries and glands in first trimester of pregnancy. Therefore, serial sections from in situ first trimester placenta were immuno-single- and immuno-double-stained to distinguish in a first step between arteries and veins and secondly between invaded and non-invaded vessels. Subsequently, invasion of EVTs into uterine vessels was quantified. Our data show that uterine veins are significantly more invaded by EVTs than uterine arteries (29.2 ± 15.7 %) during early pregnancy. Counted vessel cross sections revealed significantly higher EVT invasion into veins (59.5 ± 7.9 %) compared to arteries (29.2 ± 15.7 %). In the lumen of veins, single EVTs were repeatedly found, beside detached glandular epithelial cells or syncytial fragments. This study allows the expansion of our hitherto postulated concept of EVT invasion during first trimester of pregnancy. We suggest that invasion of EVTs into uterine veins is responsible the draining of waste and blood plasma from the intervillous space during the first trimester of pregnancy.
Implantation and subsequent placental development depend on a well-orchestrated interaction between fetal and maternal tissues, involving a fine balanced synergistic cross-talk of inflammatory and immune-modulating factors. Tumor necrosis factor (TNF)-α has been increasingly recognized as pivotal factor for successful pregnancy, although high maternal TNF-α levels are associated with a number of adverse pregnancy conditions including gestational hypertension and gestational diabetes mellitus. This study describes effects of exogenously applied TNF-α, mimicking increased maternal TNF-α levels, on the secretion profile of inflammation associated factors in human first trimester villous placenta. Conditioned culture media from first trimester villous placental explants were analyzed by inflammation antibody arrays and ELISA after 48 h culture in the presence or absence of TNF-α. Inflammation antibody arrays identified interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 2 (CCL2), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as the most abundantly secreted inflammation-associated factors under basal culture conditions. In the presence of TNF-α, secretion of GM-CSF, CCL5, and IL-10 increased, whereas IL-4 and macrophage CSF levels decreased compared with controls. ELISA analysis verified antibody arrays by showing significantly increased synthesis and release of GM-CSF and CCL5 by placental explants in response to TNF-α. Immunohistochemistry localized GM-CSF in the villous trophoblast compartment, whereas CCL5 was detected in maternal platelets adhering to perivillous fibrin deposits on the villous surface. mRNA-based in situ padlock probe approach localized GM-CSF and CCL5 transcripts in the villous trophoblast layer and the villous stroma. Results from this study suggest that the inflammatory secretion profile of human first trimester placenta shifts towards increased levels of GM-CSF, CCL5, and IL10 in response to elevated maternal TNF-α levels, whereas IL-6 and IL-8 remain unaffected. This shift may represent a protective mechanism by human first trimester villous placenta to sustain trophoblast function and dampen inflammatory processes in the intervillous space. Implantation and subsequent placenta development are mandatory steps for successful human pregnancy and depend on a well-orchestrated interaction between fetal and maternal tissues. Fetal-maternal interaction involves a fine balanced synergistic cross-talk of inflammaory and immune-modulating factors to allow maternal immune adaption and tolerance of the semiallogeneic fetus at the one hand, whereas maternal immune functions need to be maintained to fight off infections on the other hand. Various concepts and paradigms have been suggested trying to explain how the maternal immune system is modulated to guarantee a viable pregnancy. One of the proposed paradigms is based on studies by Wegmann et al, 1 describing a shift from an inflammatory T-helper 1 (Th1) cytokine profile to a rather anti-inflammatory T-helper 2 (Th2) profile. ...
During pregnancy, the fetal-maternal interface establishes immune tolerance between the fetus and the mother. CD24, a mucin-like glycoprotein expressed at the surface of hematopoietic cells and diverse tumor cells, is known to interact with the sialic acid-binding immunoglobulin-type lectins (Siglecs). This interaction was assessed as a candidate complex for the immune suppression response in the placenta. CD24 was affinity purified from term placenta and characterized by SDS-PAGE, Western blot and ELISA. Binding of recombinant Siglecs to placental CD24 was evaluated by ELISA. The expression of CD24 and Siglec-10 in first trimester placental tissues was investigated by immunohistochemistry and immunofluorescence. Placental CD24 had an apparent molecular weight of 30-70 kDa consistent with its high degree of N- and O-linked glycosylation. EDTA-sensitive CD24-Siglec-10 interaction via the terminal sialic acid glycan residues of CD24 was observed. CD24 did not interact with Siglec-3 or Siglec-5. During the first trimester, and already in gestational week (GA) 8, CD24 showed high expression in villous and extravillous cytotrophoblasts. There was also a mild expression in stromal cells, while syncytiotrophoblasts were negative. Co-localization of CD24 with Siglec-10 was observed in endometrial glands and in first trimester decidual cells in close vicinity to extracellular trophoblasts. This study is the first to demonstrate the early presence of CD24 in the placenta cytotrophoblast layers, placental bed and maternal uterine glands. The presence of the CD24-Siglec-10 in these regions of fetal-maternal interactions suggests a possible role in mediating immune tolerance at the fetal-maternal interface.
Fusion of cytotrophoblasts with the overlying syncytiotrophoblast is an integral step in differentiation of the human placental villous trophoblast. Multiple factors, such as growth factors, hormones, cytokines, protein kinases, transcription factors and structural membrane proteins, were described to modulate trophoblast fusion. However, the knowledge on remodelling of the membrane-associated cytoskeleton during trophoblast fusion is very limited. This study describes the link between remodelling of spectrin-like a-fodrin and intercellular trophoblast fusion. Experiments with primary trophoblasts isolated from term placentas and the choriocarcinoma cell line BeWo revealed a biphasic strategy of the cells to achieve reorganization of a-fodrin. Syncytialization of trophoblasts was accompanied by down-regulation of a-fodrin mRNA, whereas the full-length a-fodrin protein was cleaved into 120 and 150 kDa fragments. Application of calpeptin and calpain inhibitor III did not affect a-fodrin fragmentation in primary term trophoblasts and forskolin-treated BeWo cells, but decreased secretion of b human chorionic gonadotropin. In contrast, inhibitors of caspases 3, 8 and 9 attenuated generation of the 120 kDa fragment and a general caspase inhibitor completely blocked fragmentation, suggesting an exclusive function of caspases in a-fodrin remodelling. Immunofluorescence double staining of human placenta revealed co-localization of active caspase 8 with a-fodrin positive vesicles in fusing villous cytotrophoblasts. These results suggest that caspase-dependent fragmentation of a-fodrin may be important for reorganization of the sub-membranous cytoskeleton during trophoblast fusion. Human placental villi are covered by the syncytiotrophoblast, a multinucleated layer devoid of lateral cell borders. This syncytial layer is in direct contact with maternal blood and constitutes the foeto-maternal blood barrier. Nuclei within the syncytiotrophoblast do not replicate 1 and thus make the syncytium dependent on chromosomal DNA supplied from an exogenous source to counterbalance the continuous release of apoptotic nuclei into the maternal circulation. Acquisition of fresh nuclei is provided by the underlying cell layer of mononucleated cytotrophoblasts. Some of these villous cytotrophoblasts start to differentiate and consequently fuse with the overlying syncytiotrophoblast. This way not only nuclei, but also organelles and cytoplasm are transferred into the syncytium. Differentiation of villous cytotrophoblasts can be induced by growth factors, cytokines and hormones, which activate transcription of fusogenic genes, encoding proteins involved in trophoblast fusion. 2Fusion and conversion from the mononucleated to the syncytial state is fundamental for successful pregnancy, as the syncytiotrophoblast fulfils not only exchange of gas and nutrients between foetus and mother, but also performs endocrine functions. To meet these demands, the syncytiotrophoblast gains features originally missing in the villous cytotrophoblast compartment...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.