Novel species of fungi described in this study include those from various countries as follows: Australia: Banksiophoma australiensis (incl. Banksiophoma gen. nov.) on Banksia coccinea, Davidiellomyces australiensis (incl. Davidiellomyces gen. nov.) on Cyperaceae, Didymocyrtis banksiae on Banksia sessilis var. cygnorum, Disculoides calophyllae on Corymbia calophylla, Harknessia banksiae on Banksia sessilis, Harknessia banksiae-repens on Banksia repens, Harknessia banksiigena on Banksia sessilis var. cygnorum, Harknessia communis on Podocarpus sp., Harknessia platyphyllae on Eucalyptus platyphylla, Myrtacremonium eucalypti (incl. Myrtacremonium gen. nov.) on Eucalyptus globulus, Myrtapenidiella balenae on Eucalyptus sp., Myrtapenidiella eucalyptigena on Eucalyptus sp., Myrtapenidiella pleurocarpae on Eucalyptus pleurocarpa, Paraconiothyrium hakeae on Hakea sp., Paraphaeosphaeria xanthorrhoeae on Xanthorrhoea sp., Parateratosphaeria stirlingiae on Stirlingia sp., Perthomyces podocarpi (incl. Perthomyces gen. nov.) on Podocarpus sp., Readeriella ellipsoidea on Eucalyptus sp., Rosellinia australiensis on Banksia grandis, Tiarosporella corymbiae on Corymbia calophylla, Verrucoconiothyrium eucalyptigenum on Eucalyptus sp., Zasmidium commune on Xanthorrhoea sp., and Zasmidium podocarpi on Podocarpus sp. Brazil: Cyathus aurantogriseocarpus on decaying wood, Perenniporia brasiliensis on decayed wood, Perenniporia paraguyanensis on decayed wood, and Pseudocercospora leandrae-fragilis on Leandra fragilis. Chile: Phialocephala cladophialophoroides on human toe nail. Costa Rica: Psathyrella striatoannulata from soil. Czech Republic: Myotisia cremea (incl. Myotisia gen. nov.) on bat droppings. Ecuador: Humidicutis dictiocephala from soil, Hygrocybe macrosiparia from soil, Hygrocybe sangayensis from soil, and Polycephalomyces onorei on stem of Etlingera sp. France: Westerdykella centenaria from soil. Hungary: Tuber magentipunctatum from soil. India: Ganoderma mizoramense on decaying wood, Hodophilus indicus from soil, Keratinophyton turgidum in soil, and Russula arunii on Pterigota alata. Italy: Rhodocybe matesina from soil. Malaysia: Apoharknessia eucalyptorum, Harknessia malayensis, Harknessia pellitae, and Peyronellaea eucalypti on Eucalyptus pellita, Lectera capsici on Capsicum annuum, and Wallrothiella gmelinae on Gmelina arborea. Morocco: Neocordana musigena on Musa sp. New Zealand: Candida rongomai-pounamu on agaric mushroom surface, Candida vespimorsuum on cup fungus surface, Cylindrocladiella vitis on Vitis vinifera, Foliocryphia eucalyptorum on Eucalyptus sp., Ramularia vacciniicola on Vaccinium sp., and Rhodotorula ngohengohe on bird feather surface. Poland: Tolypocladium fumosum on a caterpillar case of unidentified Lepidoptera. Russia: Pholiotina longistipitata among moss. Spain: Coprinopsis pseudomarcescibilis from soil, Eremiomyces innocentii from soil, Gyroporus pseudocyanescens in humus, Inocybe parvicystis in humus, and Penicillium parvofructum from soil. Unknown origin: Paraphoma rhaphiolepidis on Rhaphioleps...
a global database for metacommunity ecology, integrating species, traits, environment and space alienor Jeliazkov et al. #the use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. to address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CEStES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. the CEStES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CEStES database provides an important opportunity for synthetic trait-based research in community ecology. Background & SummaryA major challenge in ecology is to understand the processes underlying community assembly and biodiversity patterns across space 1,2 . Over the three last decades, trait-based research, by taking up this challenge, has drawn increasing interest 3 , in particular with the aim of predicting biodiversity response to environment. In community ecology, it has been equated to the 'Holy Grail' that would allow ecologists to approach the potential processes underlying metacommunity patterns 4-7 . In macroecology, it is common to study biodiversity variation through its taxonomic and functional facets along gradients of environmental drivers 8-10 . In biodiversity-ecosystem functioning research, trait-based diversity measures complement taxonomic ones to predict ecosystem functions 11 offering early-warning signs of ecosystem perturbation 12 .The topic of Trait-Environment Relationships (TER) has been extensively studied across the globe and across the tree of life. However, each study deals with a specific system, taxonomic group, and geographic region and uses different methods to assess the relationship between species traits and the environment. As a consequence, we do not know how generalizable apparent relationships are, nor how they vary across ecosystems, realms, and taxonomic groups. In addition, while there is an emerging synthesis about the role of traits for terrestrial plant communities 13,14 , we know much less about other groups and ecosystem types.To address these gaps, we introduce the CESTES database -a global database for metaCommunity Ecology: Species, Traits, Environment and Space. This database assembles 80 datasets from studies that analysed empirical multivariate trait-environment relationships between 1996 (the first...
Aims Understanding fine‐grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine‐grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi‐natural) grasslands and natural grasslands are the richest vegetation type. The open‐access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high‐quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation‐plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.
We have studied the diversity of bryophytes in planted Polish post-agricultural forests dominated by the native Scots pine Pinus sylvestris and the alien (North American) red oak Quercus rubra. The planted sites would be suitable for a mesic coniferous forest (abbreviation: CFS) or mesic broadleaved forest (abbreviation: BFS). We analysed the structure and composition of the bryophyte assemblages in relation to forest site and substrate availability. Special attention was paid to the introduced Q. rubra as a host species for native bryophytes.A total of 54 bryophyte species (9 liverworts and 45 mosses) were found in the 90 plots ( phytosociological relevés, 10 10 m in area; 45 at each forest site) studied. DCA analysis showed that the bryophyte assemblages of the P. sylvestris-Q. rubra secondary forest community differed significantly between CFS and BFS sites; the similarity of the composition of bryophyte species was 36.8%. The substrate preferences (epigeic, epixylic, epiphytic), as well as the growth form and life form of the recorded bryophytes, also differed between CFS and BFS, while the proportion of bryophytes that had a particular life strategy was very similar.The introduced Q. rubra was inhabited by 28 bryophyte species, including two liverworts. This tree hosted 64% of the CFS and 47% of BFS bryophyte flora and as a host for epiphytes the species successfully fulfilled the functional role of the native oaks (Q. robur and Q. petraea). Thus, the introduction of Q. rubra may contribute to the restoration of post-agricultural forests and to the conservation of epiphytic bryophyte species. On the other hand, the negative impact of Q. rubra observed on the ground flora (including bryophytes) puts the benefits of Q. rubra for the conservation of native biodiversity in general in question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.