Many human diseases are associated with harmful action of reactive oxygen species (ROS). These species are involved in the degradation of essential tissue or related components. One of such components is synovial fluid that contains a high-molecular-weight polymer--hyaluronan (HA). Uninhibited and/or inhibited hyaluronan degradation by the action of various ROS has been studied in many in vitro models. In these studies, the change of the molecular weight of HA or a related parameter, such as HA solution viscosity, has been used as a marker of inflicted damage. The aim of the presented review is to briefly summarize the available data. Their correct interpretation could contribute to the implementation of modern methods of evaluation of the antioxidative capacity of natural and synthetic substances and prospective drugs--potential inflammatory disease modifying agents. Another focus of this review is to evaluate briefly the impact of different available analytical techniques currently used to investigate the structure of native high-molecular-weight hyaluronan and/or of its fragments.
Processing of raw plant materials causes occurrence of degraded DNA in foods. The effect of DNA degradation on amplification and quantification of transgenic and non-transgenic DNA in raw and experimentally thermally processed foods was studied. The degree of DNA degradation was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). Cetyl trimethyl ammonium bromide method yielded DNA of a better quality, while Genespin and Wizard were less appropriate. Baking at 220°C considerably reduced the size of DNA fragments. In order to measure the length of amplifiable DNA, primers for soybean and maize genes were used. Small DNA fragments ranging from 100 to 200 bp were amplified in all samples. DNA fragments over 1 kbp were amplified only if heating at 220°C lasted less than 30 min. Baking of flour (220°C) reduced the size of extracted DNA fragments so that 1,100 bp amplicon was no longer amplifiable, while the amplicons of 913 and 1,100 bp were obtained from the baked bread. When PCR assays targeting maize high mobility group and zein genes were used under the same conditions, analogous results were achieved. Quantification of genetically modified organism content was not influenced by baking.
A sample of high-molar mass hyaluronan was oxidized by seven oxidative systems involving hydrogen peroxide, cupric chloride, ascorbic acid, and sodium hypochlorite in different concentrations and combinations. The process of the oxidative degradation of hyaluronan was monitored by rotational viscometry, while the fragments produced were investigated by size-exclusion chromatography, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, and non-isothermal chemiluminometry. The results obtained imply that the degradation of hyaluronan by these oxidative systems, some of which resemble the chemical combinations present in vivo in the inflamed joint, proceeds predominantly via hydroxyl radicals. The hyaluronan fragmentation occurred randomly and produced species with rather narrow and unimodal distribution of molar mass. Oxidative degradation not only reduces the molecular size of hyaluronan but also modifies its component monosaccharides, generating polymer fragments that may have properties substantially different from those of the original macromolecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.