S U M M A R YThe Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of timeseries through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ∼2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.
We use a high‐quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati‐9 and Prati‐29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open‐hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
Research in the field of anthropogenic seismicity (AS) requires not only seismicity data but also data regarding the progress of the technological/production activities which is the origin of the induced or triggered seismic events. Such data are typically restricted and proprietary, and therefore, usually not available for independent researchers who wish to develop, perform and verify scientific research. The induced seismicity-European plate observing system (IS-EPOS) web portal offers to its user's access to data, applications and documents in order to facilitate AS research. IS-EPOS web portal has been designed to serve as one of the main pillars of the Thematic Core Service-Anthropogenic Hazards belonging to pan-European multidisciplinary research infrastructure created within the EPOS program. IS-EPOS platform is open for research community and general public according to its rules of access. The platform is operating since January 2016 and is now integrated in the EPOS Integrated Core Services. IS-EPOS e-platform promotes new opportunities to study and comprehend the dynamic and complex solid earth system by integrating the use of multidisciplinary data, data products, analysis models and online applications. The integration of existing and new national and transnational Research Infrastructures increases the access and use of multidisciplinary data recorded by the solid earth observing systems, acquired in laboratory experiments and/ or produced by computational simulations. In this paper, we describe the structure and the main innovative characteristics implemented in IS-EPOS. The platform is open to accommodate data integrated within other research projects, and it is continuously being updated with improvements in existing features and implementations of new ones. An appendix at the end of the article provides a summary of acronyms and abbreviations in order to make the reader familiar with the terms used throughout the manuscript.
The purpose of this study is to evaluate seismic hazard parameters in connection with the evolution of mining operations and seismic activity. The time-dependent hazard parameters to be estimated are activity rate, Gutenberg-Richter b-value, mean return period and exceedance probability of a prescribed magnitude for selected time windows related with the advance of the mining front. Four magnitude distribution estimation methods are applied and the results obtained from each one are compared with each other. Those approaches are maximum likelihood using the unbounded and upper bounded Gutenberg-Richter law and the non-parametric unbounded and non-parametric upper-bounded kernel estimation of magnitude distribution. The method is applied for seismicity occurred in the longwall mining of panel 3 in coal seam 503 in Bobrek colliery in Upper Silesia Coal Basin, Poland, during 2009-2010. Applications are performed in the recently established Web-Platform for Anthropogenic Seismicity Research, available at https://tcs.ah-epos.eu/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.