Nasal polyposis is a poorly understood chronic inflammatory disease often associated with asthma. As nasal polyps and asthma both are associated with massive eosinophil infiltration, they may share a common pathophysiological mechanism. Many genetic and autoimmune diseases may result from altered expression or function of cell adhesion molecules such as desmosomes. A transmission electron microscopical study was carried out on tissue from 15 patients suffering from nasal polyps, to investigate if there are changes in desmosomes in nasal polyps from asthmatic and/or allergic patients versus non-asthmatic versus non-allergic patients. In allergic patients the damage to columnar cells was more extensive than in non-allergic patients. Massive infiltration of eosinophils was observed in epithelium and connective tissue in all groups. No significant difference in thickness of the basal lamina was found between any of the groups. All patients had dilated capillaries in the connective tissue. The intercellular space between the epithelial cells was smallest in the asthmatic non-allergic group. The relative length of columnar cell or basal cell desmosomes was reduced in patients with asthma or allergy, compared to non-allergic, non-asthmatic patients. Hence, there appears to be a weakness in the desmosomes in asthmatics and allergics. Epithelial shedding may play an important role in the pathophysiological process of a multifactorial disease such as asthma.
All rats treated only with tobramycin showed a deterioration of hearing. None of the rats given simultaneous treatment with tobramycin and edaravone demonstrated hearing loss. A 7 day delay in edaravone injection still prevented hearing loss, but a 14 day delay had only a temporary prophylactic effect.
This is the first report describing the successful treatment of severe nasal polyposis with chemotherapy. Based on this experience, we suggest a phase II trial with chemotherapy, preferably "low dose" methotrexate, in patients with severe nasal polyposis.
It was investigated whether azithromycin (AZM) stimulates chloride (Cl-) efflux from cystic fibrosis (CF) and non-CF airway epithelial cells, possibly secondary to up-regulation of the multidrug resistance protein (MDR). CF and non-CF human airway epithelial cell lines (CFBE and 16HBE) were treated with 0.4, 4, and 40 microg/mL AZM for 4 days. Cl- efflux was explored in the presence or absence of specific inhibitors of CFTR and alternative Cl- channels. Six CF patients received AZM (500 mg daily) for 6 months. The percentage of predicted forced vital capacity (FVC%), forced expiratory volume (FEV1%), and the number of acute exacerbations were compared before and after treatment. Nasal biopsies were taken before and after treatment, and mRNA expression of MDR and CFTR was determined by in situ hybridization. A significant dose-dependent increase of Cl- efflux from CFBE cells (but not from 16HBE cells) was observed after AZM treatment. A CFTR inhibitor significantly reduced AZM-stimulated Cl- efflux from CFBE cells. A significant improvement in FEV1%, and fewer exacerbations were observed. AZM treatment did not affect mRNA expression of MDR and CFTR. The stimulation of Cl- efflux could be part of the explanation for the clinical improvement seen among the patients.
Cp was found in nasopharyngeal samples from two patients but from none of the controls. Neither patients nor controls had Cp in biopsies from the middle turbinate. Antibody titers against Cp were significantly higher and more prevalent in patients than in controls. Seventeen patients were treated with antibiotics but only four of them recovered from sinusitis symptoms during the 2-year follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.