The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro. The acute glucose lowering effect was studied in lean wild-type and GPR120 null mice following oral or intravenous glucose tolerance tests. In vitro, in GPR120 overexpressing cells, both agonists signaled through Gαq, Gαs and the β-arrestin pathway. However, in mouse islets the signaling pathway was different since the agonists reduced cAMP production. The GPR120 agonists stimulated GLP-1 secretion both in vitro in STC-1 cells and in vivo following oral administration. In vivo GPR120 activation induced significant glucose lowering and increased insulin secretion after intravenous glucose administration in lean mice, while the agonists had no effect in GPR120 null mice. Exendin 9–39, a GLP-1 receptor antagonist, abolished the GPR120 induced effects on glucose and insulin following an intravenous glucose challenge. In conclusion, GLP-1 secretion is an important mechanism behind the acute glucose lowering effect following specific GPR120 activation.
Based on the present series of experiments, an important role of IKACh in human atrial electrophysiology, as well as its potential as a viable target for effective management of AF, may be questioned.
Ghrelin is produced by gastric A-like cells and released in response to food deprivation. Interestingly, psychological stress also raises circulating ghrelin levels. This study compared plasma ghrelin levels in Sprague-Dawley (SPD) rats and high-anxiety Wistar Kyoto (WKY) rats. The two strains were also compared with respect to plasma gastrin, a gastric hormone with a pre-and postprandial release pattern opposite to that of ghrelin, and to the activity of the gastrindependent, histamine-forming ECL cells in the gastric mucosa. The rats were killed after being freely fed or after an over-night fast. The stomachs were weighed and tissue samples were collected for histological and biochemical analysis. Plasma ghrelin and gastrin levels were determined by RIA. While fasted SPD rats had higher plasma ghrelin levels than fasted WKY rats (P!0 . 001), plasma ghrelin did not differ between freely fed rats of the two strains. Gastrin levels were higher in fed WKY rats than in fed SPD rats (P! 0 . 001). Despite the higher plasma gastrin level, the oxyntic mucosal histidine decarboxylase (HDC) activity (a marker of ECL-cell activity) in fed rats and the mucosal thickness did not differ between the two strains. In a subsequent study, rats were subjected to water-avoidance stress for 60 min, causing plasma gastrin to increase in WKY rats (P!0 . 001) but not in SPD rats. In conclusion, high-anxiety WKY rats had lower circulating ghrelin and higher gastrin than SPD rats in both the fasted and fed state, while the ECL-cell activity (HDC activity) was only moderately affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.