Raman spectroscopy is highly sensitive to the morphology and electronic structures of graphitic materials, but a convenient interpretation model has been lacking for multiwalled carbon nanotubes (MWCNTs), in particular for the discrimination of spectral changes induced by covalent functionalization. The present work describes a systematic investigation of the Raman analysis of covalently functionalized MWCNTs by diazonium chemistry and oxidation methodologies, with typically different mechanisms and reaction sites. A multi-peak deconvolution system and spectral band assignment were proposed based on the chemical and structural modifications identified by X-ray photoelectron spectroscopy, thermogravimetry, X-ray diffraction, specific surface areas and the comparative analysis of the first and second order regions of the Raman spectra. Diazonium functionalization takes place mainly in the π-system of the external sidewall, while oxidation occurs on defects and leads to structure burning. This allowed us to distinguish between spectral features related to aromaticity disruptions within the sidewalls and spectral features related to changes within the inner tubes. The model was validated extending the studies to the functionalization of MWCNTs by the Bingel reaction.
CsgA is an aggregating protein from bacterial biofilms, representing a class of functional amyloids. Its amyloid propensity is defined by five fragments (R1–R5) of the sequence, representing non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment’s propensity for self-aggregation and aggregating characteristics of the whole protein. We study the self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as previously reported for Escherichia coli, however, with different temporal characteristics for each species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are more easily formed and more durable in Salmonella enterica than those in Escherichia coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.