In the paper, a joint discrete universality theorem for periodic zeta-functions with multiplicative coefficients on the approximation of analytic functions by shifts involving the sequence f kg of imaginary parts of nontrivial zeros of the Riemann zeta-function is obtained. For its proof, a weak form of the Montgomery pair correlation conjecture is used. The paper is a continuation of [A. Laurinčikas, M. Tekorė, Joint universality of periodic zeta-functions with multiplicative coefficients, Nonlinear Anal. Model. Control, 25(5):860–883, 2020] using nonlinear shifts for approximation of analytic functions.
The periodic zeta-function is defined by the ordinary Dirichlet series with periodic coefficients. In the paper, joint universality theorems on the approximation of a collection of analytic functions by nonlinear shifts of periodic zeta-functions with multiplicative coefficients are obtained. These theorems do not use any independence hypotheses on the coefficients of zeta-functions.
In the paper, we obtain universality theorems for compositions of some classes of operators in multidimensional space of analytic functions with a collection of periodic zeta-functions. The used shifts of periodic zeta-functions involve the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.