Abstract:The aim of the study was to elaborate the remote sensing methods for monitoring wetlands ecosystems. The investigation was carried out during the years 2002-2010 in the Biebrza Wetlands. The meteorological conditions at the test site varied from extremely dry to very wet. The authors propose applying satellite remote sensing data acquired in the optical and microwave spectrums to classify wetlands vegetation habitats for the assessment of vegetation changes and estimation of wetlands' biophysical properties to improve monitoring of these unique, very often physically impenetrable, areas. The backscattering coefficients (σ°) calculated from ALOS PALSAR FBD (Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar, Fine Beam Dual Mode) images registered at cross polarization HV on 12 May 2008 were used to classify the main wetland communities using ground truth observations and the visual interpretation method. As a result, the σ° values were distributed among the six wetlands' vegetation classes: scrubs, sedges-scrubs, sedges, reeds, sedges-reeds, rushes, and the areas of each community and changes were assessed. Also, the change in the biophysical variable as Leaf Area Index (LAI) is described using the information from PALSAR data. Strong linear relationships have been found between LAI and σ° derived for particular wetland classes, which then were applied to elaborate the maps of LAI . Differences of almost double T s between "dry" and "wet" years were noticed that reflect observed weather conditions. The highest values of NDVI occurred in years with a sufficient amount of precipitation with the lowest in "dry" years. NDVI values variances within the same wetlands class resulted mainly from the differences in soil moisture. The results of this study show that the satellite data from microwave and optical spectrum gave the repetitive spatial information about vegetation growth conditions and could be used for monitoring wetland ecosystems.
Abstract:The objectives of the study were to determine the spatial rate of CO 2 flux (Net Ecosystem Exchange) and soil moisture in a wetland ecosystem applying Sentinel-1 IW (Interferometric Wide) data of VH (Vertical Transmit/Horizontal Receive-cross polarization) and VV (Vertical Transmit/Vertical Receive-like polarization) polarization. In-situ measurements of carbon flux, soil moisture, and LAI (Leaf Area Index) were carried out over the Biebrza Wetland in north-eastern Poland. The impact of soil moisture and LAI on backscattering coefficient (σ • ) calculated from Sentinel-1 data showed that LAI dominates the influence on σ • when soil moisture is low. The models for soil moisture have been derived for wetland vegetation habitat types applying VH polarization (R 2 = 0.70 to 0.76). The vegetation habitats: reeds, sedge-moss, sedges, grass-herbs, and grass were classified using combined one Landsat 8 OLI (Operational Land Imager) and three TerraSAR-X (TSX) ScanSAR VV data. The model for the assessment of Net Ecosystem Exchange (NEE) has been developed based on the assumption that soil moisture and biomass represented by LAI have an influence on it. The σ • VH and σ • VV describe soil moisture and LAI, and have been the input to the NEE model. The model, created for classified habitats, is as follows: NEE = f (σ • Sentinel-1 VH, σ • Sentinel-1 VV). Reasonably good predictions of NEE have been achieved for classified habitats (R 2 = 0.51 to 0.58). The developed model has been used for mapping spatial and temporal distribution of NEE over Biebrza wetland habitat types. Eventually, emissions of CO 2 to the atmosphere (NEE positive) has been noted when soil moisture (SM) and biomass were low. This study demonstrates the importance of the capability of Sentinel-1 microwave data to calculate soil moisture and estimate NEE with all-weather acquisition conditions, offering an important advantage for frequent wetlands monitoring.
Land cover is one of the key terrestrial variables used for monitoring and as input for modelling in support of achieving the United Nations Strategical Development Goals. Global and Continental Land Cover Products (GCLCs) aim to provide the required harmonized information background across areas; thus, they are not being limited by national or other administrative nomenclature boundaries and their production approaches. Moreover, their increased spatial resolution, and consequently their local relevance, is of high importance for users at a local scale. During the last decade, several GCLCs were developed, including the Global Historical Land-Cover Change Land-Use Conversions (GLC), the Globeland-30 (GLOB), Corine-2012 (CLC) and GMES/ Copernicus Initial Operation High Resolution Layers (GIOS). Accuracy assessment is of high importance for product credibility towards incorporation into decision chains and implementation procedures, especially at local scales. The present study builds on the collaboration of scientists participating in the Global Observations of Forest Cover—Global Observations of Land Cover Dynamics (GOFC-GOLD), South Central and Eastern European Regional Information Network (SCERIN). The main objective is to quantitatively evaluate the accuracy of commonly used GCLCs at selected representative study areas in the SCERIN geographic area, which is characterized by extreme diversity of landscapes and environmental conditions, heavily affected by anthropogenic impacts with similar major socio-economic drivers. The employed validation strategy for evaluating and comparing the different products is detailed, representative results for the selected areas from nine SCERIN countries are presented, the specific regional differences are identified and their underlying causes are discussed. In general, the four GCLCs products achieved relatively high overall accuracy rates: 74–98% for GLC (mean: 93.8%), 79–92% for GLOB (mean: 90.6%), 74–91% for CLC (mean: 89%) and 72–98% for GIOS (mean: 91.6%), for all selected areas. In most cases, the CLC product has the lower scores, while the GLC has the highest, closely followed by GIOS and GLOB. The study revealed overall high credibility and validity of the GCLCs products at local scale, a result, which shows expected benefit even for local/regional applications. Identified class dependent specificities in different landscape types can guide the local users for their reasonable usage in local studies. Valuable information is generated for advancing the goals of the international GOFC-GOLD program and aligns well with the agenda of the NASA Land-Cover/Land-Use Change Program to improve the quality and consistency of space-derived higher-level products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.