In the pharmaceutical technology, paediatric population still presents the greatest challenge in terms of developing flexible and appropriate drug dosage forms. As for many medicines, there is a lack of paediatric dosage forms adequate for a child’s age; it is a prevailing practice to use off label formulations. Children need balanced and personalized treatment, patient-friendly preparations, as well as therapy that facilitates dosing and thus eliminates frequent drug administration, which can be ensured by modified release (MR) forms. MR formulations are commonly used in adult therapy, while rarely available for children. The aim of this article is to elucidate how to modify drug release in paediatric oral dosage forms, discuss the already accessible technologies and to introduce novel approaches of manufacturing with regard to paediatric population.
Sodium alginate and its oligosaccharides through potential antifungal properties might improve the activity of antifungal drugs enhancing their efficacy and potentially reducing the frequency of application. Mucoadhesive buccal films are oral dosage forms designed for maintaining both local or systemic drug effects and seem to be a very promising alternative to conventional oral formulations. Hence, in this study, mucoadhesive buccal films based on the alginate and its oligosaccharide oligomer composed predominantly of mannuronic acid for the administration of posaconazole-antifungal drug from the azole group were developed. As the polymer gelation method, a relatively new freeze-thaw technique was chosen. All prepared formulations were examined for pharmaceutical tests, swelling, mechanical, and mucoadhesive properties. In addition, the influence of sodium alginate (ALG) and alginate oligosaccharides (OLG) on POS antifungal activity on Candida species was performed. It was observed that film formulation containing 1% ALG and 1% OLG (F2) was characterized by optimal mucoadhesive and swelling properties and prolonged drug release up to 5 h. Additionally, it was shown that OLG affected the growth reduction of all tested Candida spp. The obtained data has opened the way for future research for developing OLG-based dosage forms, which might increase the activity of antifungal drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.