PurposeSince the introduction of PSMA PET/CT with 68Ga-PSMA-11, this modality for imaging prostate cancer (PC) has spread worldwide. Preclinical studies have demonstrated that short-term androgen deprivation therapy (ADT) can significantly increase PSMA expression on PC cells. Additionally, retrospective clinical data in large patient cohorts suggest a positive association between ongoing ADT and a pathological PSMA PET/CT scan. The present evaluation was conducted to further analyse the influence of long-term ADT on PSMA PET/CT findings.MethodsA retrospective analysis was performed of all 1,704 patients who underwent a 68Ga-PSMA-11 PET/CT scan at our institution from 2011 to 2017 to detect PC. Of 306 patients scanned at least twice, 10 had started and continued ADT with a continuous clinical response between the two PSMA PET/CT scans. These ten patients were included in the current analysis which compared the tracer uptake intensity and volume of PC lesions on PSMA PET/CT before and during ongoing ADT.ResultsOverall, 31 PC lesions were visible in all ten patients before initiation of ADT. However, during ongoing ADT (duration 42–369 days, median 230 days), only 14 lesions were visible in eight of the ten patients. The average tracer uptake values decreased in 71% and increased in 12.9% of the PC lesions. Of all lesions, 33.3% were still visible in six patients with a complete PSA response (≤0.1 ng/ml).ConclusionContinuous long-term ADT significantly reduces the visibility of castration-sensitive PC on PSMA PET/CT. If the objective is visualization of the maximum possible extent of disease, we recommend referring patients for PSMA PET/CT before starting ADT.
Objectives Reconstructing images from measurements with small pixels below the system's resolution limit theoretically results in image noise reduction compared with measurements with larger pixels. We evaluate and quantify this effect using data acquired with the small pixels of a photon-counting (PC) computed tomography scanner that can be operated in different detector pixel binning modes and with a conventional energy-integrating (EI) detector. Materials and Methods An anthropomorphic abdominal phantom that can be extended to 3 sizes by adding fat extension rings, equipped with iodine inserts as well as human cadavers, was measured at tube voltages ranging from 80 to 140 kV. The images were acquired with the EI detector (0.6 mm pixel size at isocenter) and the PC detector operating in Macro mode (0.5 mm pixel size at iso) and ultrahigh-resolution (UHR) mode (0.25 mm pixel size at iso). Both detectors are components of the same dual-source prototype computed tomography system. During reconstruction, the modulation transfer functions were matched to the one of the EI detector. The dose-normalized contrast-to-noise ratio (CNRD) values are evaluated as a figure of merit. Results Images acquired in UHR mode achieve on average approximately 6% higher CNRD compared with Macro mode at the same spatial resolution for a quantitative D40f kernel. Using a sharper B70f kernel, the improvement increases to 21% on average. In addition, the better performance of PC detectors compared with EI detectors with regard to iodine imaging has been evaluated by comparing CNRD values for Macro and EI. Combining both of these effects, a CNRD improvement of up to 34%, corresponding to a potential dose reduction of up to 43%, can be achieved for D40f. Conclusions Reconstruction of UHR data with a modulation transfer function below the system's resolution limit reduces image noise for all patient sizes and tube voltages compared with standard acquisitions. Thus, a relevant dose reduction may be clinically possible while maintaining image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.