Entomopathogenic fungi are known for their ability to carry out glycosylation of flavonoids, which usually results in the improvement of their stability and bioavailability. In this study we used a newly isolated strain of the entomopathogenic filamentous fungus Isaria fumosorosea KCH J2 as a biocatalyst. Our aim was to evaluate its ability to carry out the biotransformation of flavonoids and to obtain new flavonoid derivatives. The fungus was isolated from a spider’s carcass and molecularly identified using analysis of the ITS1-ITS2 rDNA sequence. As a result of biotransformation of 6-methylflavone two new products were obtained: 6-methylflavone 8-O-β-D-(4”-O-methyl)-glucopyranoside and 6-methylflavone 4’-O-β-D-(4”-O-methyl)-glucopyranoside. Chemical structures of the products were determined based on spectroscopic methods (1H NMR, 13C NMR, COSY, HMBC, HSQC). Our research allowed us to discover a new species of filamentous fungus capable of carrying out glycosylation reactions and proved that I. fumosorosea KCH J2 is an effective biocatalyst for glycosylation of flavonoid compounds. For the first time we describe biotransformations of 6-methylflavone and the attachment of the sugar unit to the flavonoid substrate having no hydroxyl group. The possibility of using flavonoid aglycones is often limited by their low bioavailability due to poor solubility in water. The incorporation of a sugar unit improves the physical properties of tested compounds and thus increases the chance of using them as pharmaceuticals.
Durum wheat (Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012–2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.Electronic supplementary materialThe online version of this article (10.1007/s00114-017-1528-7) contains supplementary material, which is available to authorized users.
Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.