Calcium-selective ion channels are known to have carboxylate-rich selectivity filters, a common motif that is primarily responsible for their high Ca(2+) affinity. Different Ca(2+) affinities ranging from micromolar (the L-type Ca channel) to millimolar (the ryanodine receptor channel) are closely related to the different physiological functions of these channels. To understand the physical mechanism for this range of affinities given similar amino acids in their selectivity filters, we use grand canonical Monte Carlo simulations to assess the binding of monovalent and divalent ions in the selectivity filter of a model Ca channel. We use a reduced model where the electolyte is modeled by hard-sphere ions embedded in a continuum dielectric solvent, while the interior of protein surrounding the channel is allowed to have a dielectric coefficient different from that of the electrolyte. The induced charges that appear on the protein/lumen interface are calculated by the induced charge computation method [Boda et al., Phys. Rev. E 69, 046702 (2004)]. It is shown that decreasing the dielectric coefficient of the protein attracts more cations into the pore because the protein's carboxyl groups induce negative charges on the dielectric boundary. As the density of the hard-sphere ions increases in the filter, Ca(2+) is absorbed into the filter with higher probability than Na(+) because Ca(2+) provides twice the charge to neutralize the negative charge of the pore (both structural carboxylate oxygens and induced charges) than Na(+) while occupying about the same space (the charge/space competition mechanism). As a result, Ca(2+) affinity is improved an order of magnitude by decreasing the protein dielectric coefficient from 80 to 5. Our results indicate that adjusting the dielectric properties of the protein surrounding the permeation pathway is a possible way for evolution to regulate the Ca(2+) affinity of the common four-carboxylate motif.
Monte Carlo simulations of equilibrium selectivity of Na channels with a DEKA locus are performed over a range of radius R and protein dielectric coefficient epsilon(p). Selectivity arises from the balance of electrostatic forces and steric repulsion by excluded volume of ions and side chains of the channel protein in the highly concentrated and charged (approximately 30 M) selectivity filter resembling an ionic liquid. Ions and structural side chains are described as mobile charged hard spheres that assume positions of minimal free energy. Water is a dielectric continuum. Size selectivity (ratio of Na+ occupancy to K+ occupancy) and charge selectivity (Na+ to Ca2+) are computed in concentrations as low as 10(-5) M Ca2+. In general, small R reduces ion occupancy and favors Na+ over K+ because of steric repulsion. Small epsilon(p) increases occupancy and favors Na+ over Ca2+ because protein polarization amplifies the pore's net charge. Size selectivity depends on R and is independent of epsilon(p); charge selectivity depends on both R and epsilon(p). Thus, small R and epsilon(p) make an efficient Na channel that excludes K+ and Ca2+ while maximizing Na+ occupancy. Selectivity properties depend on interactions that cannot be described by qualitative or verbal models or by quantitative models with a fixed free energy landscape.
Calcium-selective ion channels often contain a selectivity filter made of similar amino acids, rich in carboxlylates, although the Ca2+ affinities of these channels range from micromolar to millimolar. To understand the physical mechanism for this range of affinities, we use grand canonical Monte Carlo simulations to study the competition of Na+ and Ca2+ in the selectivity filter of a reduced model of a Ca channel. We show that Ca2+ affinity is increased dramatically when both the volume and dielectric coefficient of the protein are reduced.
Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.