MicroRNAs (miRNAs) are small regulatory RNAs involved in virtually all biological processes. Although many of them are co-expressed from clusters, little is known regarding the impact of this organization on the regulation of their accumulation. In this study, we set to decipher a regulatory mechanism controlling the expression of the ten clustered pre-miRNAs from Kaposi's sarcoma associated herpesvirus (KSHV). We measured in vitro the efficiency of cleavage of each individual pre-miRNA by the Microprocessor and found that pre-miR-K1 and -K3 were the most efficiently cleaved pre-miRNAs. A mutational analysis showed that, in addition to producing mature miRNAs, they are also important for the optimal expression of the whole set of miRNAs. We showed that this feature depends on the presence of a canonical pre-miRNA at this location since we could functionally replace pre-miR-K1 by a heterologous pre-miRNA. Further in vitro processing analysis suggests that the two stem-loops act in cis and that the cluster is cleaved in a sequential manner. Finally, we exploited this characteristic of the cluster to inhibit the expression of the whole set of miRNAs by targeting the pre-miR-K1 with LNA-based antisense oligonucleotides in cells either expressing a synthetic construct or latently infected with KSHV.
An important proportion of microRNA (miRNA) genes tend to lie close to each other within animal genomes. Such genomic organization is generally referred to as miRNA clusters. Even though many miRNA clusters have been greatly studied, most attention has been usually focused on functional impacts of clustered miRNA co-expression. However, there is also another compelling aspect about these miRNA clusters, their polycistronic nature. Being transcribed on a single RNA precursor, polycistronic miRNAs benefit from common transcriptional regulation allowing their coordinated expression. And yet, numerous reports have revealed striking discrepancies in the accumulation of mature miRNAs produced from the same cluster. Indeed, the larger polycistronic transcripts can act as platforms providing unforeseen post-transcriptional regulatory mechanisms controlling individual miRNA processing, thus leading to differential miRNA expression, and sometimes even challenging the general assumption that polycistronic miRNAs are co-expressed. In this review, we aim to address the current knowledge about how miRNA polycistrons are post-transcriptionally regulated. In particular, we will focus on the mechanisms occurring at the level of the primary transcript, which are highly relevant for individual miRNA processing and as such have a direct repercussion on miRNA function within the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.