Background: There are no effective biomarkers for the management of bronchopulmonary carcinoids (BPC). We examined the utility of a neuroendocrine multigene transcript “liquid biopsy” (NETest) in BPC for diagnosis and monitoring of the disease status. Aim: To independently validate the utility of the NETest in diagnosis and management of BPC in a multicenter, multinational, blinded study. Material and Methods: The study cohorts assessed were BPC (n = 99), healthy controls (n = 102), other lung neoplasia (n = 101) including adenocarcinomas (ACC) (n = 41), squamous cell carcinomas (SCC) (n = 37), small-cell lung cancer (SCLC) (n = 16), large-cell neuroendocrine carcinoma (LCNEC) (n = 7), and idiopathic pulmonary fibrosis (IPF) (n = 50). BPC were histologically classified as typical (TC) (n = 62) and atypical carcinoids (AC) (n = 37). BPC disease status determination was based on imaging and RECIST 1.1. NETest diagnostic metrics and disease status accuracy were evaluated. The upper limit of normal (NETest) was 20. Twenty matched tissue-blood pairs were also evaluated. Data are means ± SD. Results: NETest levels were significantly increased in BPC (45 ± 25) versus controls (9 ± 8; p < 0.0001). The area under the ROC curve was 0.96 ± 0.01. Accuracy, sensitivity, and specificity were: 92, 84, and 100%. NETest was also elevated in SCLC (42 ± 32) and LCNEC (28 ± 7). NETest accurately distinguished progressive (61 ± 26) from stable disease (35.5 ± 18; p < 0.0001). In BPC, NETest levels were elevated in metastatic disease irrespective of histology (AC: p < 0.02; TC: p = 0.0006). In nonendocrine lung cancers, ACC (18 ± 21) and SCC (12 ± 11) and benign disease (IPF) (18 ± 25) levels were significantly lower compared to BPC level (p < 0.001). Significant correlations were evident between paired tumor and blood samples for BPC (R: 0.83, p < 0.0001) and SCLC (R: 0.68) but not for SCC and ACC (R: 0.25–0.31). Conclusions: Elevated NETest levels are indicative of lung neuroendocrine neoplasia. NETest levels correlate with tumor tissue and imaging and accurately define clinical progression.
Background: There is a substantial unmet clinical need for an accurate and effective blood biomarker for neuroendocrine neoplasms (NEN). We therefore evaluated, under real-world conditions in an ENETS Center of Excellence (CoE), the clinical utility of the NETest as a liquid biopsy and compared its utility with chromogranin A (CgA) measurement. Methods: The cohorts were: gastroenteropancreatic NEN (GEPNEN; n = 253), bronchopulmonary NEN (BPNEN; n = 64), thymic NEN (n = 1), colon cancer (n = 37), non-small-cell lung cancer (NSCLC; n = 63), benign lung disease (n = 59), and controls (n = 86). In the GEPNEN group, 164 (65%) had image-positive disease (IPD, n = 135) or were image-negative but resection-margin/biopsy-positive (n = 29), and were graded as G1 (n = 106), G2 (n = 49), G3 (n = 7), or no data (n = 2). The remainder (n = 71) had no evidence of disease (NED). In the BPNEN group, 43/64 (67%) had IPD. Histology revealed typical carcinoids (TC, n = 14), atypical carcinoids (AC, n = 14), small-cell lung cancer (SCLC, n = 11), and large-cell neuroendocrine carcinoma (LCNEC, n = 4). Disease status (stable or progressive) was evaluated according to RECIST v1.1. Blood sampling involved NETest (n = 563) and NETest/CgA analysis matched samples (n = 178). NETest was performed by PCR (on a scale of 0–100), with a score ≥20 reflecting a disease-positive status and >40 reflecting progressive disease. CgA positivity was determined by ELISA. Samples were deidentified and measurements blinded. The Kruskal-Wallis, Mann-Whitney U, and McNemar tests, and the area under the curve (AUC) of the receiver-operating characteristics (ROC) were used in the statistical analysis. Results: In the GEPNEN group, NETest was significantly higher (34.4 ± 1.8, p < 0.0001) in disease-positive patients than in patients with NED (10.5 ± 1, p < 0.0001), colon cancer patients (18 ± 4, p < 0.0004), and controls (7 ± 0.5, p < 0.0001). Sensitivity for detecting disease compared to controls was 89% and specificity was 94%. NETest levels were increased in G2 vs. G1 (39 ± 3 vs. 32 ± 2, p = 0.02) and correlated with stage (localized: 26 ± 2 vs. regional/distant: 40 ± 3, p = 0.0002) and progression (55 ± 5 vs. 34 ± 2 in stable disease, p = 0.0005). In the BPNEN group, diagnostic sensitivity was 100% and levels were significantly higher in patients with bronchopulmonary carcinoids (BPC; 30 ± 1.3) who had IPD than in controls (7 ± 0.5, p < 0.0001), patients with NED (24.1 ± 1.3, p < 0.005), and NSCLC patients (17 ± 3, p = 0.0001). NETest levels were higher in patients with poorly differentiated BPNEN (LCNEC + SCLC; 59 ± 7) than in those with BPC (30 ± 1.3, p = 0.0005) or progressive disease (57.8 ± 7), compared to those with stable disease (29.4 ± 1, p < 0.0001). The AUC for differentiating disease from controls was 0.87 in the GEPNEN group and 0.99 in BPC patients (p < 0.0001). Matched CgA analysis was performed in 178 patients. In the GEPNEN group (n = 135), NETest was significantly more accurate for detecting disease (99%) than CgA positivity (53%; McNemar...
Background: Currently, there are no effective markers to diagnose and monitor patients with neuroendocrine tumors (NETs). The aim of this study was to assess bone metabolism based on selected markers of bone turnover: OST, OPG, and IGFBP-3, in both the group of patients with NETs and the control group. Associations with selected sociodemographic, biochemical, and clinicopathological characteristics were examined. We also evaluated any potential associations between these markers and selected biochemical markers of NETs commonly used in clinical practice. Methods: The study group included 60 patients with GEP-NETs and BP-NETs, while the control group comprised 62 healthy individuals. The serum concentrations of OST, OPG and IGFBP-3 were assessed using ELISA. Results: OST and OPG levels were significantly higher in the study group compared to the control group. In the study group, we observed a significant correlation between OPG and the clinical stage and chromogranin A. Additionally, an association was found between OPG and histological grade, Ki-67, and metastasis in GEP-NET cases. Conclusions: Markers of bone turnover cannot be used in the routine diagnostics of neuroendocrine tumors. Nonetheless, these markers may help evaluate the skeletal system in patients with NETs. Further research is needed to determine the utility of osteocalcin (OST) and osteoprotegerin (OPG) as potential biomarkers for neuroendocrine tumors.
Neuroendocrine neoplasms (NENs) constitute about 2% of all malignant neoplasms, and the angiogenesis process in these tumors is still of a great interest. Vasohibin-1 (VASH-1) is an angiogenesis inhibitor, while vascular endothelial growth factor A (VEGF-A) is one of the main factors promoting vascular formation. The subject of this study was to assess serum concentration of these factors in patients with diagnosed NEN and in control group. Methods. The study group consisted of 120 patients with diagnosed NENs, while the control group consisted of 69 healthy volunteers. The concentrations of VASH-1 and VEGF-A in serum were tested using the ELISA. We also analyzed the association of the concentration of these factors with demographic data (e.g., age and gender), body mass index (BMI), primary tumor location, histological grade, metastasis, clinical staging, selected biochemical parameters and markers of NENs, and information on smoking habits. Results. The mean concentration of VASH-1 was 218.8 ± 359.8 pg/ml in the study group and 973.1 ± 1239.4 pg/ml in the control group, that difference was statistically significant ( p < 0.05 ). In the NEN group, the highest concentration of VASH-1 was in patients with pancreatic NENs in relation to NENs with different location of the primary tumor ( p < 0.05 ). Negative correlation was found between the concentration of VASH-1 and serotonin ( r S = − 0.19 , p < 0.05 ). No statistically significant differences were observed for VEGF-A ( p = 0.658 ). Conclusions. Patients with NENs showed lower serum level of VASH-1 in comparison to healthy volunteers. The highest level of VASH-1 was observed in tumors localized in pancreas. This might reflect the relevant function of VASH-1 in NENs and requires further evaluation to further knowledge of angiogenesis in NENs. Furthermore, the serum concentration of VEGF-A showed no statistical differences and probably does not have diagnostic value in this group of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.