Formic acid is a valuable chemical derived from biomass, as it has a high hydrogen-storage capacity and appears to be an attractive source of hydrogen for various applications. Hydrogen production via formic acid decomposition is often based on using supported catalysts with Pt-group metal nanoparticles. In the present paper, we show that the decomposition of the acid proceeds more rapidly on single metal atoms (by up to one order of magnitude). These atoms can be obtained by rather simple means through anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers. A thorough evaluation of the structure of the active site by aberration-corrected scanning transmission electron microscopy (ac-STEM) in high-angle annular dark field (HAADF) mode, by CO chemisorption, X-ray photoelectron spectroscopy (XPS) and quantum-chemical calculations reveals that the metal atom is coordinated by a pair of pyridinic nitrogen atoms at the edge of graphene sheets. The chelate binding provides an ionic/electron-deficient state of these atoms prevents their aggregation and thereby leads to an excellent stability under the reaction conditions. Catalysts with single atoms have also shown very high selectivity. Evidently, the findings can be extended to hydrogen production from other chemicals and can be helpful for improving other energy-related and environmentally benign catalytic processes.
Single-site heterogeneous catalysis with isolated Pd atoms was reported earlier mainly for oxidation reactions and for Pd catalysts supported on oxide surfaces. In the present work, we show that single Pd atoms on nitrogen-functionalized mesoporous carbon, observed by aberration-corrected scanning transmission electron microscopy (ac STEM), contribute significantly to the catalytic activity for hydrogen production from vapor-phase formic acid decomposition providing an increase by 2-3 times as compared to Pd catalysts supported on nitrogen-free carbon or unsupported Pd powder. Some gain in selectivity was also achieved.According to X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies after ex situ reduction in hydrogen at 573 K, these species exist in a
The catalytic properties of 1 wt % Ru catalysts with the same mean Ru cluster size of 1.4–1.5 nm supported on herringbone‐type carbon nanofibers with different N contents were compared for H2 production from formic acid decomposition. The Ru catalyst on the support with 6.8 wt % N gave a 1.5–2 times higher activity for the dehydrogenation reaction (CO2, H2) than the catalyst on the undoped support. The activity in the dehydration reaction (CO, H2O) was the same. As a result, the selectivity to H2 increased significantly from 83 to 92 % with N‐doping, and the activation energies for both reactions were close (55–58 kJ mol−1). The improvement could be explained by the presence of Ru clusters stabilized by pyridinic N located on the open edges of the external surface of the carbon nanofibers. This N may activate formic acid by the formation of an adduct (>NH+HCOO−) followed by its dehydrogenation on the adjacent Ru clusters.
Formic acid derived from biomass is known to be used for hydrogen production over Pd catalysts. The effects of preparation variables, structure of the carbon support, surface functional composition on the state of Pd, and catalytic properties of the samples in the vapor-phase decomposition of formic acid were studied. In all catalysts derived from Pd acetate, metal particles visible by conventional TEM had similar sizes, but the adsorption capacity towards CO responded strongly to N-doping of the carbon surface. Moreover, a decrease in the CO/Pd values was accompanied by a significant increase in the reaction rate. Taking account of X-ray photoelectron spectroscopy (XPS) and atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF/STEM) data, the trends observed were assigned to a larger fraction of single electron-deficient Pd atoms in the N-doped samples, which do not adsorb CO but interact with formic acid to produce hydrogen. This was confirmed by extended DFT studies. The obtained results are valuable for the development of Pd catalysts on carbon supports for different processes.
Au catalysts with the same particle sizes demonstrate the following order of activity in formic acid decomposition: Au/Al2O3 > Au/ZrO2 ∼ Au/CeO2 > Au/La2O3 > Au/MgO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.