In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysis of the different conditions was compared to REST. All activations were evaluated on a random effects level at P = 0.001. Activation of brain regions for bladder cold stimulation (DRAIN 1 period) was found bilaterally in the inferior parietal lobe [Brodmann area (BA) 40], the right insula (BA 13), the right cerebellar posterior lobe, the right middle temporal gyrus (BA 20), and the right postcentral gyrus (BA 3). In conclusion, bladder cooling caused a different supraspinal activation pattern compared to what is known to occur during bladder distention. This supports our hypothesis that cold sensation is processed differently from bladder distension at the supraspinal level.
We investigated (i) the central representation of lower urinary tract (LUT) control and (ii-iii) the acute and short-term central neuromodulatory effect of peripheral pudendal nerve stimulation in incomplete spinal cord injured (SCI) patients using functional magnetic resonance imaging (fMRI). The urinary bladder of eight SCI patients has been passively filled and emptied using a catheter, to identify the neural substrate of bladder control (i), and with simultaneous peripheral pudendal nerve stimulation to investigate its acute central neuromodulatory effect (ii). To identify the potential effects of pudendal nerve stimulation treatment (iii), six patients underwent a 2-week training using pudendal nerve stimulation followed by another fMRI session of bladder filling. The pre- and post-training fMRI results have been compared and correlated with the patient's pre- and post-training urological status. Our results suggest that the central representation of bladder filling sensation is preserved in the subacute stage of incomplete SCI. However, compared to earlier data from healthy subjects, it shows decreased neural response in right prefrontal areas and increased in left prefrontal regions, indicating diminished inhibitory micturition control as well as, compensatory or decompensatory reorganization of bladder control. We also provide evidence for a neuromodulatory effect of acute pudendal nerve stimulation, which was most prominent in the right posterior insula, a brain region implicated in homeostatic interoception in human. Pudendal stimulation training also induced significant neuromodulation, predominantly signal increases, in the normal cortical network of bladder control. Correlations with the patient's urological status indicate that this neuromodulatory effect may reflect the clinical improvement following training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.