Climate change and global warming are of great concern to agriculture worldwide and are among the most discussed issues in today’s society. Climate parameters such as increased temperatures, rising atmospheric CO2 levels, and changing precipitation patterns have significant impacts on agricultural production and on agricultural insect pests. Changes in climate can affect insect pests in several ways. They can result in an expansion of their geographic distribution, increased survival during overwintering, increased number of generations, altered synchrony between plants and pests, altered interspecific interaction, increased risk of invasion by migratory pests, increased incidence of insect-transmitted plant diseases, and reduced effectiveness of biological control, especially natural enemies. As a result, there is a serious risk of crop economic losses, as well as a challenge to human food security. As a major driver of pest population dynamics, climate change will require adaptive management strategies to deal with the changing status of pests. Several priorities can be identified for future research on the effects of climatic changes on agricultural insect pests. These include modified integrated pest management tactics, monitoring climate and pest populations, and the use of modelling prediction tools.
Fertile soils in the River Neretva estuary were developed by fluvial sedimentation and deposition of the eroded soil material from the karst hills within the catchment. After extensive reclamation, two reclaimed land zones (fluvial terraces and lower-laying terraces) have been delineated, both used for agriculture. The main objectives of this study were to evaluate soil chemical and geochemical properties in reclaimed zones that differ mainly in topography, soil types and agricultural land use. The origin of the trace metals in the arable soils was studied using multivariate statistics, and interpolation maps of trace metals were produced using GIS and geostatistics. Soil trace metal concentrations do not exceed a threshold value established by the Croatian Government regulation, with exception of copper. Comparative analysis of the main soil properties and trace metal concentrations in the study area showed a pronounced spatial variation and differences between two reclaimed zones in soil organic matter content, bioavailable P and total concentrations of Cd and Cu. Factor analysis in the area of the lower-laying terraces showed grouping of bioavailable P and K, organic matter content and pH (negative loading) in the component associated mostly with the land use. In the area of the fluvial terraces, bioavailable P and total Cd were grouped in the same component that may be explained by the traditional small farm agriculture and overuse of mineral fertilizers. In the whole study area, processes of secondary salinization were determined, accompanied by the raised chloride and sodium concentration measured in the saturation soil extract.
Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media, LLC, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to selfarchive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.