Background: Many diet-related surveys have been conducted in England over the past four to five decades. Yet, diet-related ill-health is estimated to cost the NHS £5.8 billion annually. There has been no recent assessment of the diet-related surveys currently available in England. This paper aims to fill this gap in the literature by providing researchers, especially those interested in conducting secondary (quantitative) research on diet, with a detailed overview of the major repeated cross-sectional and longitudinal surveys conducted in England over the last 48 years (1970-2018). Method: A three-stage review process was used to identify and assess surveys and synthesise the information necessary for achieving the paper's aim. Surveys were identified using the UK Data Service, Cohort and Longitudinal Studies Enhancement Resources (CLOSER), the Medical Research Council (MRC) Cohort Directory and the Consumer Data Research Centre (CDRC) online data repositories/directories. Surveys were summarised to include a brief background, the survey design and methodology used, variables captured, the target population, level of geography covered, the type of dietary assessment method(s) used, primary data users, data accessibility, availability and costs, as well as key survey features and considerations. Results: The key considerations identified across the various surveys following the review include: the overall survey design and the different dietary assessment method(s) used in each survey; methodological changes and general inconsistencies in the type and quantity of diet-related questions posed across and within surveys over time; and differences in the level of geography and target groups captured. Conclusion: It is highly unlikely that any survey dataset will meet all the needs of researchers. Nevertheless, researchers are encouraged to make good use of the secondary data currently available, in order to conduct the research necessary for the creation of more evidence-based diet-related policies and interventions in England. The review process used in this paper is one that can be easily replicated and one which future studies can use to update and expand upon to assist researchers in identifying the survey(s) most aligned to their research questions.
There is an ongoing demand for data on population health, for reasons of resource allocation, future planning and crucially to address inequalities in health between people and between populations. Although there are regular sources of data at coarse spatial scales, such as countries or large sub-national units such as states, there is often a lack of good quality health data at the local level. One method to develop reliable estimates of population health outcomes is spatial microsimulation, an approach that has its roots in economic studies. Here, we share a review of this method for estimating health in populations, explaining the different approaches available and examples where the method is applied successfully for creating both static and dynamic populations. Recent notable advances in the method that allow uncertainty to be represented are highlighted, along with the evolving approaches to validation that are an ongoing challenge in small-area estimation. The summary serves as a primer for academics new to the area of research as well as an overview for non-academic researchers who consider using these models for policy evaluations.
Background: Small-area estimation models are regularly commissioned by public health bodies to identify areas of greater inequality and target areas for intervention in a range of behaviours and outcomes. Such local modelling has not been completed for diet consumption in England despite diet being an important predictor of health status. The study sets out whether aspects of adult diet can be modelled from previously collected data to define and evaluate area-level interventions to address obesity and ill-health.Methods: Adults aged 16 years and over living in England. Consumption of fruit, vegetables, and sugar-sweetened beverages (SSB) are modelled using small-area estimation methods in English neighbourhoods (Middle Super Output Areas [MSOA]) to identify areas where reported portions are significantly different from recommended levels of consumption. The selected aspects of diet are modelled from respondents in the National Diet and Nutrition Survey using pooled data from 2008-2016.Results: Estimates indicate that the average prevalence of adults consuming less than one portion of fruit, vegetables or 100% juice each day by MSOA is 6.9% (range of 4.3 to 14.7%, SE 0.06) and the average prevalence of drinking more than 330ml/day of SSB is 11.5% (range of 5.7 to 30.5%, SE 0.03). Credible intervals around the estimates are wider for SSB consumption. The results identify areas including regions in London and urban areas in the North of England which may be prioritised for targeted interventions to support reduced consumption of SSB and/or an increase in portions of fruit and vegetables.Conclusion: These estimates provide valuable information at a finer spatial scale than is presently feasible, allowing for within-country and locality prioritisation of resources to improve diet. Local, targeted interventions to improve fruit and vegetable consumption such as subsidies or voucher schemes should be considered where consumption of these foods is predicted to be low.
Background Small-area estimation models are regularly commissioned by public health bodies to identify areas of greater inequality and target areas for intervention in a range of behaviours and outcomes. Such local modelling has not been completed for diet consumption in England despite diet being an important predictor of health status. The study sets out whether aspects of adult diet can be modelled from previously collected data to define and evaluate area-level interventions to address obesity and ill-health. Methods Adults aged 16 years and over living in England. Consumption of fruit, vegetables, and sugar-sweetened beverages (SSB) are modelled using small-area estimation methods in English neighbourhoods (Middle Super Output Areas [MSOA]) to identify areas where reported portions are significantly different from recommended levels of consumption. The selected aspects of diet are modelled from respondents in the National Diet and Nutrition Survey using pooled data from 2008–2016. Results Estimates indicate that the average prevalence of adults consuming less than one portion of fruit, vegetables or 100% juice each day by MSOA is 6.9% (range of 4.3 to 14.7%, SE 0.06) and the average prevalence of drinking more than 330ml/day of SSB is 11.5% (range of 5.7 to 30.5%, SE 0.03). Credible intervals around the estimates are wider for SSB consumption. The results identify areas including regions in London, urban areas in the North of England and the South coast which may be prioritised for targeted interventions to support reduced consumption of SSB and/or an increase in portions of fruit and vegetables. Conclusion These estimates provide valuable information at a finer spatial scale than is presently feasible, allowing for within-country and locality prioritisation of resources to improve diet. Local, targeted interventions to improve fruit and vegetable consumption such as subsidies or voucher schemes should be considered where consumption of these foods is predicted to be low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.