We report the formation of 830 nm (cw) laser-induced, reversible axonal varicosities, using immunostaining with beta-tubulin, in small and medium diameter, TRPV-1 positive, cultured rat DRG neurons. Laser also induced a progressive and statistically significant decrease (p<0.005) in MMP in mitochondria in and between static axonal varicosities. In cell bodies of the neuron, the decrease in MMP was also statistically significant (p<0.05), but the decrease occurred more slowly. Importantly we also report for the first time that 830 nm (cw) laser blocked fast axonal flow, imaged in real time using confocal laser microscopy and JC-1 as mitotracker. Control neurons in parallel cultures remained unaffected with no varicosity formation and no change in MMP. Mitochondrial movement was continuous and measured along the axons at a rate of 0.8 microm/s (range 0.5-2 microm/s), consistent with fast axonal flow. Photoacceptors in the mitochondrial membrane absorb laser and mediate the transduction of laser energy into electrochemical changes, initiating a secondary cascade of intracellular events. In neurons, this results in a decrease in MMP with a concurrent decrease in available ATP required for nerve function, including maintenance of microtubules and molecular motors, dyneins and kinesins, responsible for fast axonal flow. Laser-induced neural blockade is a consequence of such changes and provide a mechanism for a neural basis of laser-induced pain relief. The repeated application of laser in a clinical setting modulates nociception and reduces pain. The application of laser therapy for chronic pain may provide a non-drug alternative for the management of chronic pain.
The development of antibodies effective in crossing the blood brain barrier (BBB), capable of accessing the cytosol of affected cells and with higher affinity for PrPSc would be of paramount importance in arresting disease progression in its late stage and treating individuals with prion diseases. Antibody-based therapy appears to be the most promising approach following the exciting report from White and colleagues, establishing the “proof-of-principle” for prion-immunotherapy. After passive transfer, anti-prion antibodies were shown to be very effective in curing peripheral but not central rodent prion disease, due to the fact that these anti-prion antibodies are relatively large molecules and cannot therefore cross the BBB. Here, we show that an anti-prion antibody derived from camel immunised with murine scrapie material adsorbed to immunomagnetic beads is able to prevent infection of susceptible N2a cells and cure chronically scrapie-infected neuroblastoma cultures. This antibody was also shown to transmigrate across the BBB and cross the plasma membrane of neurons to target cytosolic PrPC. In contrast, treatment with a conventional anti-prion antibody derived from mouse immunised with recombinant PrP protein was unable to prevent recurrence of PrPSc replication. Furthermore, our camelid antibody did not display any neurotoxic effects following treatment of susceptible N2a cells as evidenced by TUNEL staining. These findings demonstrate the potential use of anti-prion camelid antibodies for the treatment of prion and other related diseases via non-invasive means.
Studies of the properties of soluble oligomer species of amyloidogenic proteins, derived from different proteins with little sequence homology, have indicated that they share a common structure and may share similar pathogenic mechanisms. Amyloid β, tau protein, as well as amyloid precursor protein normally associated with Alzheimer’s disease and Parkinson’s disease were found in lesions and plaques of multiple sclerosis patients. The objective of the study is to investigate whether brain and cerebrospinal fluid (CSF) samples derived from multiple sclerosis patients demonstrate the presence of soluble oligomers normally associated with protein-misfolding diseases such as Alzheimer’s disease. We have used anti-oligomer monoclonal antibodies to immunodetect soluble oligomers in CSF and brain tissues derived from multiple sclerosis patients. In this report, we describe the presence of soluble oligomers in the brain tissue and cerebral spinal fluid of multiple sclerosis patients detected with our monoclonal anti-oligomer antibodies with Western blot and Sandwich enzyme-linked immunosorbent assay (sELISA). These results might suggest that protein aggregation plays a role in multiple sclerosis pathogenesis although further and more refined studies are needed to confirm the role of soluble aggregates in multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.