This work reports on vertical nanowire FET devices (VNWFETs) with a gate-all-around (GAA) configuration, which offer new, promising opportunities to enable further CMOS scaling and increased layout efficiency. Compared to triple-gate finFETs or lateral GAA-NWFETs, these devices are shown to have the potential for exhibiting lower parasitic RC and reduced power consumption at 5nm node design rules. They can also allow up to 30% denser SRAM bitcells with improved read and write stability, smaller minimum operating voltages (Vmin), and lower standby leakage values. A comprehensive overview of some key integration aspects for VNWFET fabrication will also be addressed here, covering: VNW arrays, gate/top electrodes, and bottom/top isolation layers formation. In addition, we also present alternative solutions to obtain improved process control and to overcome etch-layout dependences which are especially critical within the context of vertical device integration using a channel-first approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.