There is a long-standing debate whether mangrove and seagrass habitats in the IndoPacific region function as nurseries for coral reef fishes. We studied the use of all major shallow-water habitat types by juvenile coral reef fish using visual census surveys at 4 islands along the Tanzanian coast (East Africa) and at the island of Grande Comoros (Comoros archipelago). We investigated the value of mangroves, seagrass beds, coral reefs, macroalgae and intertidal flats as a juvenile habitat for fish by studying density distribution patterns of juveniles and adults of 76 reef fish species in these habitats. We assessed (1) which part of the reef fish community used mangrove-seagrass habitats as juvenile or adult habitats, (2) whether adult fish densities and diversity on adjacent reefs were related to the presence of these shallow habitats, and (3) whether adults of species that use these habitats when juvenile were less abundant on coral reefs situated far away from these juvenile habitats. Seagrass beds and coral reefs were the most important juvenile fish habitats. Ontogenetic migrations between seagrass beds and reef habitats possibly occur, since several species showed their highest juvenile densities on seagrass beds, whereas adults showed their highest densities on reefs adjacent to these seagrass beds. The presence of areas with seagrass beds positively influenced adult densities of many reef fish species on adjacent coral reefs. Of the 36 fish species whose juveniles were observed in seagrass beds along the Tanzanian coast, 32 species were absent from or showed low densities on coral reefs of the island of Grande Comoros (lacking seagrass beds or mangroves). On reefs far from seagrass beds and mangroves along the Tanzanian coast, 25 of these 36 species were absent or showed low densities in comparison with reefs adjacent to these habitats. KEY WORDS: Coral reef fish · Seagrass beds · Mangroves · Juveniles · Habitat connectivity · Indian Ocean Resale or republication not permitted without written consent of the publisherMar Ecol Prog Ser 302: [63][64][65][66][67][68][69][70][71][72][73][74][75][76] 2005 relatively minor, and have concluded that there is less interaction between mangroves and other coastal habitats than in the Caribbean (Quinn & Kojis 1987, Robertson & Duke 1987, Thollot & Kulbicki 1988, Kimani et al. 1996, Laroche et al. 1997, Huxham et al. 2004). Other studies, however, did report the presence of juvenile coral reef fish in mangrove areas (Lal et al. 1984, Little et al. 1988, Robertson & Duke 1990, Wakwabi & Mees 1999, de Boer et al. 2001. Hence, the importance of Indo-Pacific mangroves for juvenile fish remains unclear.Unlike mangroves, seagrass beds in the Indo-Pacific region are commonly used by juvenile coral reef fish (Jones & Chade 1975, Kimani et al. 1996, Kochzius 1997, Gullström et al. 2002, Nakamura & Sano 2004a. This means that seagrass beds may have a greater value as juvenile habitats for reef fish than mangroves. So far, however, there have been no studies in the ...
Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.
Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24–47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77–100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change.
Coral reefs and seagrass beds are often located adjacent to one another, but little is known about the degree to which their fish communities are interlinked. To determine whether coral reef fishes on the coral reef are interlinked with or segregated from fishes on adjacent seagrass beds, a 60 m coral reef -seagrass gradient was studied on the island of Zanzibar in the western Indian Ocean. Using underwater visual census, coral reef fishes were surveyed in 4 habitat zones: (1) a coral patch reef, (2) seagrass beds bordering the coral reef, (3) seagrass beds at a 30 m distance from the coral reef edge and (4) seagrass beds at a 60 m distance from the coral reef edge. Based on the densities of juveniles and adults in the 4 zones, the 48 species that were observed were classified into reef-associated species, seagrass-associated species, nursery species, generalists and rare species. Reef-associated species occurred almost exclusively on the coral reef and at the reef -seagrass edge, while seagrass-associated species occurred almost exclusively on the seagrass beds. Generalists and seagrass-associated species occurred in all 3 seagrass zones, but densities of generalists on seagrass beds decreased with increasing distance from the reef, whereas that of seagrass-associated species increased. Reef-associated and generalist species showed an edge effect, where densities on the seagrass beds near the reef edge were higher than on the seagrass beds further away. Juvenile densities of nursery species on seagrass beds also increased with the distance from the reef, whereas their adults showed the highest densities on the coral reef, suggesting a possible ontogenetic shift from the seagrass beds to the reef. The results of the present study show that this seagrass-coral reef landscape features habitat segregation between species and life stages and shows an edge effect, possibly driven by competition mechanisms between species or life stages. KEY WORDS: Coral reef fish · Seagrass beds · Habitat connectivity · Species interaction · Migrations · Edge effect Resale or republication not permitted without written consent of the publisherMar Ecol Prog Ser 299: [277][278][279][280][281][282][283][284][285][286][287][288] 2005 The few studies that have examined interlinkages between multiple fish species on seagrass beds and coral reefs were carried out in situations where the 2 habitat types were located at some distance (i.e. hundreds of metres) from each other. This distance may be too large to result in species interactions between these habitats, because species associated with 1 habitat may only migrate across short distances (metres) to adjacent habitats. No published studies seem to have investigated fish species distribution patterns in a continuous reef -seagrass gradient.Where coral reefs and seagrass beds meet, interactions between fish communities associated with 1 of these habitats are very likely to occur in the edge zone: reef-associated fish may partly migrate into the seagrass beds, whereas seagrass-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.