Purpose Quantitative mass spectrometry assays for immunoglobulins (Igs) are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, e.g. multiple myeloma. Experimental design Using LC-MS/MS data, Ig constant region peptides and transitions were selected for liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM). Quantitative assays were used to assess Igs in serum from 83 patients. Results LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1–4, IgA1–2, IgM, IgD, and IgE, as well as kappa(κ) and lambda(λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 multiple myeloma cell line and two MM patients. Conclusions and Clinical Relevance LC-MRM assays targeting constant region peptides determine the type and isoform of the involved immunoglobulin and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher interassay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques.
There have been significant advances in the treatment of multiple myeloma in the last 2 decades. Approximately 25% of patients with newly diagnosed myeloma have some degree of kidney impairment. During the course of illness, nearly 50% of myeloma patients will develop kidney disease. Moreover, approximately 10% of myeloma patients have advanced kidney disease requiring dialysis at presentation. Hemodialysis is associated with a significantly reduced overall survival. In the setting of prolonged long-term overall survival due to the use of newer immunotherapeutic agents in the treatment of myeloma, patients with myeloma and advanced kidney disease may benefit from more aggressive management with kidney transplantation. Unfortunately, most data regarding outcomes of kidney transplantation in patients with myeloma come from single center case series. With the advent of novel treatment choices, it remains unclear if outcomes of kidney transplant recipients with myeloma have improved in recent years. In this descriptive systematic review, we coalesced published patient data over the last 20 years to help inform clinicians and patients on expected hematologic and kidney transplant outcomes in this complex population. We further discuss the future of kidney transplantation in patients with paraproteinemia.
Multiple myeloma is an incurable disease, although patient survival has increased with the availability of novel agents. Both multiple myeloma and its therapies often affect the renal, immune, skeletal, hematologic, and nervous systems. The resulting organ dysfunctions often impair the quality of life of affected patients, complicate and limit subsequent therapies, and may result in significant mortality. Research on the treatment of complications of multiple myeloma has been limited; hence, preventative and management strategies for patients with these complications are heterogeneous and often based on anecdotal experience. In this paper, we review the effects of myeloma and the novel therapies on organ systems and suggest management strategies.
Targeted immunotherapy has arisen over the past decade to the forefront of cancer care. Notably, targeted therapies such as antibody-drug conjugates (ADCs) are becoming more recognized for a novel approach in cancer treatment. The mechanism of action of ADCs incorporates a monoclonal antibody portion directed against the tumor cell antigen and attached to the tumoricidal portion via chemical linkage. The binding of the monoclonal antibody portion allows for tumor cell internalization of the ADC and precise release of the toxic payload within the cancer cell. Multiple myeloma (MM) is an incurable cancer for which belantamab mafodotin was the first-in-class ADC to achieve United States Food and Drug Administration (FDA) approval for treatment of this disease. Clinical trials are currently evaluating other ADCs in the treatment of MM. In this review, a look at the current ADCs being tested in MM clinical trials with a focus on those that are more promising and a potential next-in-line for FDA approval for treatment of MM is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.