Obesity is a complex disease characterized by excessive expansion of adipose tissue and is an important risk factor for chronic diseases such as cardiovascular disorders, hypertension and type 2 diabetes. Moreover, obesity is a major contributor to inflammation and oxidative stress, all of which are key underlying causes for diabetes and insulin resistance. Specifically, adipose tissue secretes bioactives molecules such as inflammatory hormone angiotensin II, generated in the Renin Angiotensin System (RAS) from its precursor angiotensinogen. Accumulated evidence suggests that RAS may serve as a strong link between obesity and insulin resistance. Dysregulation of RAS also occurs in several other tissues including those involved in regulation of glucose and whole body homeostasis as well as insulin sensitivity such as muscle, liver and pancreas and heart. Here we review the scientific evidence for these interactions and potential roles for oxidative stress, inflammation and mitochondrial dysfunction in these target tissues which may mediate effects of RAS in metabolic diseases. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
With the use of mice and cultured adipocytes, we showed that EPA ameliorates HF-diet effects at least in part by increasing oxygen consumption and fatty acid oxidation and reducing adipocyte size, adipogenesis, and adipose tissue inflammation, independent of obesity.
Obesity is an increasingly costly and widespread epidemic, effecting 1 in 10 adults worldwide. It has been causally linked with both the metabolic syndrome and insulin resistance, both of which are associated with increased chronic inflammation. The exact mechanisms through which inflammation may contribute to both MetS and IR are numerous and their details are still largely unknown. Recently, micro-RNAs (miRNAs) have emerged as potential interventional targets due to their potential preventive roles in the pathogenesis of several diseases, including MetS and obesity. The purpose of this review paper is to discuss some of the known roles of miRNAs as mediators of inflammation-associated obesity and IR and how omega-3 polyunsaturated fatty acids may be used as a nutritional intervention for these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.