We report on the physical and optical characterization of liposomes formed by extrusion and sonication, two widely used methods for vesicle preparation. We also address the issue of whether the properties of bilayers formed from liposomes prepared by the two techniques differ at the molecular and mesoscopic levels. We used the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), with and without cholesterol, to form liposomes, incorporating 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (18:1-12:0 NBD-PC) as an optical probe of dynamics. We measured the physical morphology of liposomes by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the rotational and translational diffusion of 18:1-12:0 NBD-PC by time correlated single photon counting (TCSPC) and fluorescence recovery after pattern photobleaching (FRAPP), respectively. We find that, despite apparent differences in average size and size distribution, both methods of preparation produced liposomes that exhibit the same molecular scale environment. The translational diffusion behavior of the tethered chromophore in planar bilayer lipid membranes formed from the two types of liposomes also yielded similar results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.