Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
Ovarian cancer (OC) is becoming the most common gynecological cancer in developed countries and the most lethal gynecological malignancy. It is also the fifth leading cause of all cancer-related deaths in women. The identification of diagnostic biomarkers and development of early detection techniques for OC largely depends on the understanding of the complex functionality and regulation of genes involved in this disease. Unfortunately, information about these OC genes is scattered throughout the literature and various databases making extraction of relevant functional information a complex task. To reduce this problem, we have developed a database dedicated to OC genes to support exploration of functional characterization and analysis of biological processes related to OC. The database contains general information about OC genes, enriched with the results of transcription regulation sequence analysis and with relevant text mining to provide insights into associations of the OC genes with other genes, metabolites, pathways and nuclear proteins. Overall, it enables exploration of relevant information for OC genes from multiple angles, making it a unique resource for OC and will serve as a useful complement to the existing public resources for those interested in OC genetics. Access is free for academic and non-profit users and database can be accessed at http://apps.sanbi.ac.za/ddoc/.
Prostate cancer (PC) is one of the most commonly diagnosed cancers in men. PC is relatively difficult to diagnose due to a lack of clear early symptoms. Extensive research of PC has led to the availability of a large amount of data on PC. Several hundred genes are implicated in different stages of PC, which may help in developing diagnostic methods or even cures. In spite of this accumulated information, effective diagnostics and treatments remain evasive. We have developed Dragon Database of Genes associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise require tedious computational analyses, (ii) it integrates data on molecular interactions, pathways, gene ontologies, gene regulation at molecular level, predicted transcription factor binding sites on promoters of PC implicated genes and transcription factors that correspond to these binding sites and (iii) it contains DrugBank data on drugs associated with PC. We believe this resource will serve as a source of useful information for research on PC. DDPC is freely accessible for academic and non-profit users via http://apps.sanbi.ac.za/ddpc/ and http://cbrc.kaust.edu.sa/ddpc/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.