Eukaryotic ribosomal RNAs are post-transcriptionally modified by methylation at the ribose sugar of specific nucleotides. This takes place in the nucleolus and involves a family of small nucleolar RNAs (snoRNAs) with long regions (10-21 nucleotides) complementary to rRNA sequences spanning the methylation site--a complementary snoRNA is required for methylation at a specific site. Here we show that altering the sequence of the snoRNA is sufficient to change the specificity of methylation. Mammalian cells transfected with a snoRNA engineered to be complementary to an arbitrary rRNA sequence direct the methylation of the predicted nucleotide in that sequence. We have further identified structural features, both of the guide and substrate RNA, required for methylation and have used these to design an exogenous transcript, devoid of rRNA sequence, that is site-specifically methylated when coexpressed with an appropriate guide snoRNA. Endogenous non-ribosomal RNA can thus be targeted, possibly providing a highly selective tool for the alteration of gene expression at the post-transcriptional level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.