Objective To determine the association between preoperative nutritional status and postoperative outcomes in children undergoing surgery for congenital heart defects (CHD). Methods Seventy-one patients with CHD were enrolled in a prospective, two-center cohort study. We adjusted for baseline risk differences using a standardized risk adjustment score for surgery for CHD. We assigned a World Health Organization Z-score for each subjects’ preoperative triceps skinfold measurement, an assessment of total body fat mass. We obtained preoperative plasma concentrations of markers of nutritional status (prealbumin, albumin) and myocardial stress (B-type natriuretic peptide, BNP). Associations between indices of preoperative nutritional status and clinical outcomes were sought. Results Subjects had a median (IQR) age of 10.2 (33) months. In the UCSF cohort, duration of mechanical ventilation (median 19 hours, IQR 29), length of ICU stay (median 5 days, IQR 5), duration of any continuous inotropic infusion (median 66 hours, IQR 72) and preoperative BNP levels (median 30 pg/mL, IQR 75) were associated with a lower preoperative triceps skinfold Z-score (p<0.05). Longer duration of any continuous inotropic infusion and higher preoperative BNP levels were also associated with lower preoperative prealbumin (12.1 ± 0.5 mg/dL) and albumin (3.2 ± 0.1) (p<0.05). Conclusions Lower total body fat mass and acute and chronic malnourishment are associated with worse clinical outcomes in children undergoing surgery for CHD at UCSF, a resource-abundant institution. There is an inverse correlation between total body fat mass and BNP levels. Duration of inotropic support and BNP increase concomitantly as measures of nutritional status decrease, supporting the hypothesis that malnourishment is associated with decreased myocardial function.
Background Malnutrition is common in children with CHD and is likely to place them at an increased risk for adverse surgical outcomes. We sought to evaluate the impact of preoperative malnutrition on outcomes after paediatric cardiac surgery. Methods We conducted a retrospective analysis of patients from age 0 to 5 years undergoing cardiac surgery at Seattle Children’s Hospital from 2006 to 2015. We used regression modelling to examine the impact of malnutrition on surgical outcomes. Results We found a non-linear relationship between low height-for-age and weight-for-age z-scores and mortality after surgery. In the range of z-score ≤ −2, each additional unit decrease in height-for-age or weight-for-age z-score was associated with a 2.9 or 2.1% increased risk for mortality, respectively. Each unit decrease in height-for-age z-score was associated with a 1.2% increased risk for cardiac arrest, 1.1% increased risk for infection, and an average of 1.7 additional hours of mechanical ventilation, 6 hours longer ICU stay, and 13 hours longer hospital stay. Each unit decrease in weight-for-age z-score was associated with a 0.7% increased risk for cardiac arrest, 0.8% increased risk for infection, and an average of 1.9 additional hours of mechanical ventilation and 5.3 additional hours of ICU stay. Conclusions This study is unique in demonstrating a significant association between malnutrition and 30-day mortality and other adverse outcomes after paediatric cardiac surgery in a mixed population of CHD patients. By evaluating nutritional status as a continuous variable, we were able to clearly distinguish the point at which malnutrition begins to affect mortality.
Aims: The mitochondrial dysfunction in our lamb model of congenital heart disease with increased pulmonary blood flow (PBF) (Shunt) is associated with disrupted carnitine metabolism. Our recent studies have also shown that asymmetric dimethylarginine (ADMA) levels are increased in Shunt lambs and ADMA increases the nitration of mitochondrial proteins in lamb pulmonary arterial endothelial cells (PAEC) in a nitric oxide synthase (NOS)-dependent manner. Thus, we determined whether there was a mechanistic link between endothelial nitric oxide synthase (eNOS), ADMA, and the disruption of carnitine homeostasis in PAEC. Results: Exposure of PAEC to ADMA induced the redistribution of eNOS to the mitochondria, resulting in an increase in carnitine acetyl transferase (CrAT) nitration and decreased CrAT activity. The resulting increase in acyl-carnitine levels resulted in mitochondrial dysfunction and the disruption of mitochondrial bioenergetics. Since the addition of l-arginine prevented these pathologic changes, we examined the effect of l-arginine supplementation on carnitine homeostasis, mitochondrial function, and nitric oxide (NO) signaling in Shunt lambs. We found that the treatment of Shunt lambs with l-arginine prevented the ADMA-mediated mitochondrial redistribution of eNOS, the nitration-mediated inhibition of CrAT, and maintained carnitine homeostasis. In turn, adenosine-5¢-triphosphate levels and eNOS/heat shock protein 90 interactions were preserved, and this decreased NOS uncoupling and enhanced NO generation. Innovation: Our data link alterations in cellular l-arginine metabolism with the disruption of mitochondrial bioenergetics and implicate altered carnitine homeostasis as a key player in this process. Conclusion: l-arginine supplementation may be a useful therapy to prevent the mitochondrial dysfunction involved in the pulmonary vascular alterations secondary to increased PBF.
During the first 5 years after Fontan palliation, there is a trend toward increasing percentages of OB and OW patients. In addition, there is a significant association between Hispanic ethnicity and being OW or OB before and after surgery. Further study is needed to determine whether OW/OB status is associated with worse health outcomes in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.