Spore-forming bacterial strains were isolated from chicken gastrointestinal tracts to develop a heat-stable feed supplement that promotes weight gain in broilers. Seven Bacillus strains having more than 90% sporulation were screened from the isolates and identified to be closely related with Bacillus subtilis and Bacillus licheniformis. Of the seven strains, B. subtilis CH16 was selected to develop a feed supplement for broilers, because it formed 100% heat-stable spores, grew rapidly at 42°C and quickly formed a biofilm. In large-scale trials in broilers (n ≥ 1150 per group), the group fed CH16 (3 × 10(6) CFU g(-1) pellet) showed higher average daily gain (ADG = 61·16) and lower food conversion ratio (FCR = 1·696) than did the group fed B. licheniformis CH22 (ADG = 57·10 and FCR = 1·792), the group fed B. subtilis HU58 (ADG = 51·90 and FCR = 1·868), BioPlus group (ADG = 59·32 and FCR = 1·807) and the control group (ADG = 56·02 and FCR = 1·880). In conclusion, CH16 spores significantly increased ADG by 9·17% and reduced FCR by 9·79% in broilers. The result supports the use of B. subtilis CH16 of chicken intestinal origin as a feed supplement that promote weight gain in broilers. Significance and impact of the study: This study reports screening of Bacillus strains isolated from chicken gastrointestinal tracts for development of a feed supplement that promote weight gain in broilers. Of the seven Bacillus isolates with high sporulation efficiency (≥90%), Bacillus subtilis CH16 strain showed the best growth and biofilm formation at body temperature of broilers (42°C). In large-scale trials in broilers (n ≥ 1150 per group), CH16 spores induced a 9·17% increase in daily weight gain (ADG) and a 9·79% reduction in FCR while the commercial BioPlus(®) YC induced only a 5·89% increase in ADG and a 3·88% reduction in FCR.
Bacillus popilliae and Bacillus lentimorbus, causative agents of milky disease in Japanese beetle and related scarab larvae, have hitherto been differentiated based upon a small number of phenotypic characteristics, but they have not previously been examined at the molecular level. In this study 34 isolates of these bacteria were examined for DNA similarity and by random amplified polymorphic DNA (RAPD) analysis. Two distinct but related similarity groups were identified: the f i r s t contained strains of B. popilliae and the second contained strains of B. lentimorbus. Two strains distinct from but related t o B. popilliae may represent a subspecies. Some strains received as B. popilliae were found to be most closely related to B. lentimorbus and some received as B. lentimorbus were found to be most closely related t o B. popilliae. RAPD analysis confirmed the DNA similarity results. Paraspore formation, previously believed to be a characteristic unique to B. popilliae, was found to occur among a sub-group of B. lentimorbus strains. Growth in media supplemented with 2% NaCl was found to be a somewhat less reliable characteristic in distinguishing the species than vancomycin resistance, the latter being present only in B. popilliae.
A previously unrecognized penicillin binding protein (PBP) gene,pbpF, was identified in Staphylococcus aureus. This gene encodes a protein of 691 amino acid residues with an estimated molecular mass of 78 kDa. The molecular mass is very close to that of S. aureus PBP2 (81 kDa), and the protein is tentatively named PBP2B. PBP2B has three motifs, SSVK, SSN, and KTG, that can be found in PBPs and β-lactamases. Recombinant PBP2B (rPBP2B), which lacks a putative signal peptide at the N terminus and has a histidine tag at the C terminus, was expressed inEscherichia coli. The purified rPBP2B was shown to have penicillin binding activity. A protein band was detected from S. aureus membrane fraction by immunoblotting with anti-rPBP2B serum. Also, penicillin binding activity of the protein immunoprecipitated with anti-rPBP2B serum was detected. These results suggest the presence of PBP2B in S. aureus cell membrane that covalently binds penicillin. The internal region ofpbpF and PBP2B protein were found in all 12 S. aureus strains tested by PCR and immunoblotting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.