Docetaxel is an active chemotherapeutic agent in patients with müllerian carcinoma previously treated with paclitaxel-based chemotherapy, especially in the patients who had a long taxane-free interval after a previous short response to paclitaxel.
OBJECTIVE The tremor circuitry has commonly been hypothesized to be driven by one or multiple pacemakers within the cerebello-thalamo-cortical pathway, including the cerebellum, contralateral motor thalamus, and primary motor cortex. However, previous studies, using multiple methodologies, have advocated that tremor could be influenced by changes within the right extrastriate cortex, at both the structural and functional level. The purpose of this work was to evaluate the role of the extrastriate cortex in tremor generation and further arrest after left unilateral stereotactic radiosurgery thalamotomy (SRS-T). METHODS The authors considered 12 healthy controls (HCs, group 1); 15 patients with essential tremor (ET, right-sided, drug-resistant; group 2) before left unilateral SRS-T; and the same 15 patients (group 3) 1 year after the intervention, to account for delayed effects. Blood oxygenation level–dependent functional MRI during resting state was used to characterize the dynamic interactions of the right extrastriate cortex, comparing HC subjects against patients with ET before and 1 year after SRS-T. In particular, the authors applied coactivation pattern analysis to extract recurring whole-brain spatial patterns of brain activity over time. RESULTS The authors found 3 different sets of coactivating regions within the right extrastriate cortex in HCs and patients with pretherapeutic ET, reminiscent of the “cerebello-visuo-motor,” “thalamo-visuo-motor” (including the targeted thalamus), and “basal ganglia and extrastriate” networks. The occurrence of the first pattern was decreased in pretherapeutic ET compared to HCs, whereas the other two patterns showed increased occurrences. This suggests a misbalance between the more prominent cerebellar circuitry and the thalamo-visuo-motor and basal ganglia networks. Multiple regression analysis showed that pretherapeutic standard tremor scores negatively correlated with the increased occurrence of the thalamo-visuo-motor network, suggesting a compensatory pathophysiological trait. Clinical improvement after SRS-T was related to changes in occurrences of the basal ganglia and extrastriate cortex circuitry, which returned to HC values after the intervention, suggesting that the dynamics of the extrastriate cortex had a role in tremor generation and further arrest after the intervention. CONCLUSIONS The data in this study point to a broader implication of the visual system in tremor generation, and not only through visual feedback, given its connections to the dorsal visual stream pathway and the cerebello-thalamo-cortical circuitry, with which its dynamic balance seems to be a crucial feature for reduced tremor. Furthermore, SRS-T seems to bring abnormal pretherapeutic connectivity of the extrastriate cortex to levels comparable to those of HC subjects.
ABBREVIATIONS AC = anterior commissure; ADL = activities of daily living; BOLD = blood oxygenation level-dependent; DBS = deep brain stimulation; DMN = defaultmode network; DTI = diffusion tensor imaging; ET = essential tremor; FEW = family-wise error; IC = interconnectivity; ICA = independent component analysis; MNI = Montreal Neurological Institute; PC = posterior commissure; rs-fMRI = resting-state functional MRI; SMA = supplementary motor area; SRS = stereotactic radiosurgery; SRS-T = SRS thalamotomy; TSTH = tremor score on the treated hand; Vim = ventral intermediate nucleus.OBJECTIVE Essential tremor (ET) is the most common movement disorder. Drug-resistant ET can benefit from standard stereotactic deep brain stimulation or radiofrequency thalamotomy or, alternatively, minimally invasive techniques, including stereotactic radiosurgery (SRS) and high-intensity focused ultrasound, at the level of the ventral intermediate nucleus (Vim). The aim of the present study was to evaluate potential correlations between pretherapeutic interconnectivity (IC), as depicted on resting-state functional MRI (rs-fMRI), and MR signature volume at 1 year after Vim SRS for tremor, to be able to potentially identify hypo-and hyperresponders based only on pretherapeutic neuroimaging data. METHODS Seventeen consecutive patients with ET were included, who benefitted from left unilateral SRS thalamotomy (SRS-T) between September 2014 and August 2015. Standard tremor assessment and rs-fMRI were acquired pretherapeutically and 1 year after SRS-T. A healthy control group was also included (n = 12). Group-level independent component analysis (ICA; only n = 17 for pretherapeutic rs-fMRI) was applied. The mean MR signature volume was 0.125 ml (median 0.063 ml, range 0.002-0.600 ml). The authors correlated baseline IC with 1-year MR signatures within all networks. A 2-sample t-test at the level of each component was first performed in two groups: group 1 (n = 8, volume < 0.063 ml) and group 2 (n = 9, volume ≥ 0.063 ml). These groups did not statistically differ by age, duration of symptoms, baseline ADL score, ADL point decrease at 1 year, time to tremor arrest, or baseline tremor score on the treated hand (TSTH; p > 0.05). An ANOVA was then performed on each component, using individual subject-level maps and continuous values of 1-year MR signatures, correlated with pretherapeutic IC. RESULTS Using 2-sample t-tests, two networks were found to be statistically significant: network 3, including the brainstem, motor cerebellum, bilateral thalamus, and left supplementary motor area (SMA) (p FWE = 0.004, cluster size = 94), interconnected with the red nucleus (MNI -2, -22, -32); and network 9, including the brainstem, posterior insula, bilateral thalamus, and left SMA (p FWE = 0.002, cluster size = 106), interconnected with the left SMA (MNI 24, -28, 44). Higher pretherapeutic IC was associated with higher MR volumes, in a network including the anterior default-mode network and bilateral thalamus (ANOVA, p FWE = 0.004, cluster size = 73), inter...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.