BackgroundTelerehabilitation can contribute to the maintenance of successful rehabilitation regardless of location and time. The aim of this study was to investigate a specific three-month interactive telerehabilitation routine regarding its effectiveness in assisting patients with physical functionality and with returning to work compared to typical aftercare.ObjectiveThe aim of the study was to investigate a specific three-month interactive telerehabilitation with regard to effectiveness in functioning and return to work compared to usual aftercare.MethodsFrom August 2016 to December 2017, 111 patients (mean 54.9 years old; SD 6.8; 54.3% female) with hip or knee replacement were enrolled in the randomized controlled trial. At discharge from inpatient rehabilitation and after three months, their distance in the 6-minute walk test was assessed as the primary endpoint. Other functional parameters, including health related quality of life, pain, and time to return to work, were secondary endpoints.ResultsPatients in the intervention group performed telerehabilitation for an average of 55.0 minutes (SD 9.2) per week. Adherence was high, at over 75%, until the 7th week of the three-month intervention phase. Almost all the patients and therapists used the communication options. Both the intervention group (average difference 88.3 m; SD 57.7; P=.95) and the control group (average difference 79.6 m; SD 48.7; P=.95) increased their distance in the 6-minute-walk-test. Improvements in other functional parameters, as well as in quality of life and pain, were achieved in both groups. The higher proportion of working patients in the intervention group (64.6%; P=.01) versus the control group (46.2%) is of note.ConclusionsThe effect of the investigated telerehabilitation therapy in patients following knee or hip replacement was equivalent to the usual aftercare in terms of functional testing, quality of life, and pain. Since a significantly higher return-to-work rate could be achieved, this therapy might be a promising supplement to established aftercare.Trial RegistrationGerman Clinical Trials Register DRKS00010009; https://www.drks.de/drks_web/navigate.do? navigationId=trial.HTML&TRIAL_ID=DRKS00010009
Objectives The reliability of quantifying intratendinous vascularization by high‐sensitivity Doppler ultrasound advanced dynamic flow has not been examined yet. Therefore, this study aimed to investigate the intraobserver and interobserver reliability of evaluating Achilles tendon vascularization by advanced dynamic flow using established scoring systems. Methods Three investigators evaluated vascularization in 67 recordings in a test‐retest design, applying the Ohberg score, a modified Ohberg score, and a counting score. Intraobserver and interobserver agreement for the Ohberg score and modified Ohberg score was analyzed by the Cohen κ and Fleiss κ coefficients (absolute), Kendall τ b coefficient, and Kendall coefficient of concordance (W; relative). The reliability of the counting score was analyzed by intraclass correlation coefficients (ICC) 2.1 and 3.1, the standard error of measurement (SEM), and Bland‐Altman analysis (bias and limits of agreement [LoA]). Results Intraobserver and interobserver agreement (absolute/relative) ranged from 0.61 to 0.87/0.87 to 0.95 and 0.11 to 0.66/0.76 to 0.89 for the Ohberg score and from 0.81 to 0.87/0.92 to 0.95 and 0.64 to 0.80/0.88 to 0.93 for the modified Ohberg score, respectively. The counting score revealed an intraobserver ICC of 0.94 to 0.97 (SEM, 1.0–1.5; bias, –1; and LoA, 3–4 vessels). The interobserver ICC for the counting score ranged from 0.91 to 0.98 (SEM, 1.0–1.9; bias, 0; and LoA, 3–5 vessels). Conclusions The modified Ohberg score and counting score showed excellent reliability and seem convenient for research and clinical practice. The Ohberg score revealed decent intraobserver but unexpected low interobserver reliability and therefore cannot be recommended.
Background and Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time‐consuming data processing procedures are undertaken. However, in clinical practice simple‐real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable “off‐the‐shelf” sensor‐software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 ± 4 years, height 177 ± 11 cm, weight 73 ± 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass‐correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040−0.733, RMSE: 9.7°−20.3°, bias: 1.2°−50.7°) and insufficient agreement during complex shoulder movements (ICC: 0.104−0.453, RMSE: 10.1°−23.3°, bias: 1.0°−55.9°). Peak angular velocity (ICC: 0.202−0.865, RMSE: 14.6°/s−26.7°/s, bias: 10.2°/s−29.9°/s) and mean angular velocity (ICC: 0.019‐0.786, RMSE:6.1°/s−34.2°/s, bias: 1.6°/s−27.8°/s) were inconsistent. Conclusions The “off‐the‐shelf” sensor‐software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU‐software‐solutions may increase measurement accuracy and permit their integration into everyday clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.