The goal of the present research is to despeckle SAR images, which is critical for segmentation and target recognition in satellite SAR images. When a despeckling algorithm is applied to a SAR image, important information such as the edges, corners, textures, and object parts will degrade. Curvelet transform is a recently proposed form of multi-scale analysis that achieves better performance of wavelet and Gabor transforms in edge and curve detection. This is a geometric transform that is useful for SAR image processing. For unsupervised texture images, segmentation is different and distinct from the textures, so the textures at the boundary noises will disappear. Curvelet transform has produced good results in the detection of curved edges with higher accuracy in finding the orientation than wavelet transforms. The present study uses fast discrete curvelet transform (FDCT) based on wresting and uses unsupervised adaptive threshold learning to develop a new despeckling algorithm for SAR images. In the proposed algorithm, each segment of the SAR image can be learned for selection of its adaptive threshold. Simulation results demonstrate that the proposed algorithm performs better than similar methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.