Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.
Baobab fruit shell (BFS) biomass was used as an alternative precursor for producing high surface area and microporous baobab fruit shell activated carbon (BFS-AC) by chemical activation using KOH. Scanning electron microscope (SEM) was performed for the characterization of baobab fruit shell activated carbon. The adsorption property of BFS-AC for the removal of phenol from aqueous solution was evaluated. The effect of key adsorption parameters such as the contact time (10-20 min), BFS-AC dose (2.5-3.5 g/L), pH (1-3), and agitation speed (150-250 rpm) were optimized using a response surface methodology (RSM) with faced centered central composite design (FCCCD). Consequently, a maximum adsorption capacity (196.86 mg/g) was achieved at 15 min of contact time, 2 of pH, 3 g/L of adsorbent dosage, and 250 rpm of agitation speed. The results reveal that BFS-AC has an efficient performance for the removal of phenol from aqueous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.