Present article focusses on the thermal and rheological characteristics of ethylene glycol-water mixture (volume = 60/40) based boron nitride (h-BN) nanofluids measured at different volume concentrations (0.5-2 vol% h-BN) between temperatures 30-60 °C. X-ray diffraction and TEM analysis have confirmed the hexagonal structure of h-BN nanoparticles and the size range of the nanoparticles is within 90-170 nm. To optimize the ultrasonication time, the thermal conductivity of h-BN nanofluids has been monitored after each 30 min of sonication until a maximum thermal conductivity increase is achieved. The thermal conductivity of h-BN nanofluids shows an increasing trend with respect to particle concentration. Also, the thermal conductivity enhancement exhibits a temperature independent nature. The viscosity studies carried out over a shear rate of 0.612-122 s −1 revealed an increasing trend with the increasing concentration of h-BN loading. For all the volume concentrations, at lower shear rates, the viscosity initially decreased, displaying a non-Newtonian nature, and with a further increase in shear rate, the viscosity stays constant exhibiting a Newtonian nature. Based on the experimental outcomes, a correlation is introduced. The correlation showed a strong agreement with the current results, with an R 2 value of 0.99.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.