Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. Cytolysin A (ClyA) from is a prototypical α-helical toxin that contributes to cytolytic phenotype of several pathogenic strains. It is produced as a monomer and, upon membrane exposure, undergoes conformational changes and finally oligomerizes to form a dodecameric pore, thereby causing ion imbalance and finally cell death. However, our current understanding of this assembly process is limited to studies in detergents, which do not capture the physicochemical properties of biological membranes. Here, using single-molecule imaging and molecular dynamics simulations, we study the ClyA assembly pathway on phospholipid bilayers. We report that cholesterol stimulates pore formation, not by enhancing initial ClyA binding to the membrane but by selectively stabilizing a protomer-like conformation. This was mediated by specific interactions by cholesterol-interacting residues in the N-terminal helix. Additionally, cholesterol stabilized the oligomeric structure using bridging interactions in the protomer-protomer interfaces, thereby resulting in enhanced ClyA oligomerization. This dual stabilization of distinct intermediates by cholesterol suggests a possible molecular mechanism by which ClyA achieves selective membrane rupture of eukaryotic cell membranes. Topological similarity to eukaryotic membrane proteins suggests evolution of a bacterial α-toxin to adopt eukaryotic motifs for its activation. Broad mechanistic correspondence between pore-forming toxins hints at a wider prevalence of similar protein membrane insertion mechanisms.
Biological processes performed by proteins interacting with and processing DNA and RNA are key to cell metabolism and life. Detailed insights into these processes provide essential information for understanding the molecular basis of life and the pathological conditions that develop when such processes go awry. The next scientific breakthrough consists in the actual, direct, real-time observations and measurements of the individual mechanisms involved, in order to validate and complete the current biological models. Single-molecule technologies offer an exciting opportunity to meet these challenges and to study protein function and activity in real-time and at the single-molecule level. Here, we present our efforts for further enabling discoveries in the field of biology and biophysics using both the combination of optical tweezers with singlemolecule fluorescence microscopy (C-Trap TM ). We show the latest applications of these technologies that can enhance our understanding not only in the field of DNA/RNA-protein interactions but also in the fields of molecular motors, protein folding/unfolding, cell membranes and genome structure and organization. These experiments show that the technological advances in hybrid single-molecule methods can be turned into an easy-to-use and stable instrument that has the ability to open up new venues in many research areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.