Recognizing the speaker’s emotional state from speech signals plays a very crucial role in human–computer interaction (HCI). Nowadays, numerous linguistic resources are available, but most of them contain samples of a discrete length. In this article, we address the leading challenge in Speech Emotion Recognition (SER), which is how to extract the essential emotional features from utterances of a variable length. To obtain better emotional information from the speech signals and increase the diversity of the information, we present an advanced fusion-based dual-channel self-attention mechanism using convolutional capsule (Conv-Cap) and bi-directional gated recurrent unit (Bi-GRU) networks. We extracted six spectral features (Mel-spectrograms, Mel-frequency cepstral coefficients, chromagrams, the contrast, the zero-crossing rate, and the root mean square). The Conv-Cap module was used to obtain Mel-spectrograms, while the Bi-GRU was used to obtain the rest of the spectral features from the input tensor. The self-attention layer was employed in each module to selectively focus on optimal cues and determine the attention weight to yield high-level features. Finally, we utilized a confidence-based fusion method to fuse all high-level features and pass them through the fully connected layers to classify the emotional states. The proposed model was evaluated on the Berlin (EMO-DB), Interactive Emotional Dyadic Motion Capture (IEMOCAP), and Odia (SITB-OSED) datasets to improve the recognition rate. During experiments, we found that our proposed model achieved high weighted accuracy (WA) and unweighted accuracy (UA) values, i.e., 90.31% and 87.61%, 76.84% and 70.34%, and 87.52% and 86.19%, respectively, demonstrating that the proposed model outperformed the state-of-the-art models using the same datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.