Whether long interspersed nuclear element-1 (LINE-1) hypomethylation induced by reactive oxygen species (ROS) was mediated through the depletion of S-adenosylmethionine (SAM) was investigated. Bladder cancer (UM-UC-3 and TCCSUP) and human kidney (HK-2) cell lines were exposed to 20 μM H2O2 for 72 h to induce oxidative stress. Level of LINE-1 methylation, SAM and homocysteine (Hcy) was measured in the H2O2 -exposed cells. Effects of α-tocopheryl acetate (TA), N-acetylcysteine (NAC), methionine, SAM and folic acid on oxidative stress and LINE-1 methylation in the H2O2 -treated cells were explored. Viabilities of cells treated with H2O2 were not significantly changed. Intracellular ROS production and protein carbonyl content were significantly increased, but LINE-1 methylation was significantly decreased in the H2O2 -treated cells. LINE-1 methylation was restored by TA, NAC, methionine, SAM and folic acid. SAM level in H2O2 -treated cells was significantly decreased, while total glutathione was significantly increased. SAM level in H2O2 -treated cells was restored by NAC, methionine, SAM and folic acid; while, total glutathione level was normalized by TA and NAC. Hcy was significantly decreased in the H2O2 -treated cells and subsequently restored by NAC. In conclusion, in bladder cancer and normal kidney cells exposed to H2O2 , SAM and Hcy were decreased, but total glutathione was increased. Treatments with antioxidants (TA and NAC) and one-carbon metabolites (SAM, methionine and folic acid) restored these changes. This pioneer finding suggests that exposure of cells to ROS activates glutathione synthesis via the transsulfuration pathway leading to deficiency of Hcy, which consequently causes SAM depletion and eventual hypomethylation of LINE-1.
Familial members of urolithiasis have high risk for stone development. We observed the low sulfated glycosaminoglycan (GAG) excretion in urolithiasis patients and their descendants. In this study, we investigated urinary excretion of sulfated GAG, chondroitin sulfate (CS), heparan sulfate (HS) and hyaluronic acid (HA) in urolithiasis and their children, and explored the effect of CS and HA supplement in urolithic hyperoxaluric rats. The 24-hour urines were collected from urolithiasis patients (28) and their children (40), as well as healthy controls (45) and their children (33) to measure urinary sulfated GAG, CS, HS and HA excretion rate. Our result showed that urinary sulfated GAG and CS were diminished in both urolithiasis patients and their children, while decreased HS and increased HA were observed only in urolithiasis patients. Percentage of HS per sulfated GAG increased in both urolithiasis patients and their children. In hyperoxaluric rats induced by ethylene glycol and vitamin D, we found that CS supplement could prevent stone formation, while HA supplement had no effect on stone formation. Our study revealed that decreased urinary GAG and CS excretion are common in familial members of urolithiasis patients, and CS supplement might be beneficial in calcium oxalate urolithiasis prophylaxis for hyperoxaluric patients.
It was demonstrated that nephrolithiasis offspring carried several urinary metabolic risks predisposing to stone formation which are similar to their parents, and about one in every five nephrolithiasis children had nephrolithiasis level urinary supersaturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.