Centrosome separation in Drosophila larval neuroblasts and asymmetric transport of embryonic determinants in oocytes are both microtubule-dependent processes that require Kinesin-1 activation by Ensconsin/microtubule-associated protein 7 (MAP7). However, the molecular mechanism used by Ensconsin to activate Kinesin-1 remains elusive. Ensconsin/ MAP7 contains an N-terminal microtubule-binding domain (MBD) and a C-terminal Kinesinbinding domain (KBD). Using rescue experiments in live flies, we show that KBD expression alone is sufficient to fully rescue Ensconsin-dependent centrosome separation defects, but not the fast oocyte streaming and the localization patterns of Staufen and Gurken proteins.Interestingly, we show here for the first time that KBD binds and stimulates Kinesin-1 binding to Mts in vivo and in vitro. We propose that the KBD/Kinesin-1 motor represents a minimal activation module that stimulates Kinesin-1 binding to Mts. Addition of the MBD, present in the full length Ensconsin allows this activation to occur directly on the Mt. Our data also suggest that in a very large cell with a complex microtubule network, but not in smaller cells, this dual activation by Ensconsin is essential for optimal Kinesin-1 targeting to the microtubule cytoskeleton.
Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is a conserved and complex process that is controlled by a tightly regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SOX9, SNAI2, and SOX10 from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SOX9, SNAI2, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.