Anthropogenic drivers and global warming are altering the occurrence of infectious marine diseases, some of which produce mass mortalities with considerable ecosystemic and economic costs. The Mediterranean Sea is considered a laboratory to examine global processes, and the fan mussel Pinna nobilis a sentinel species within it. Since September 2016, fan mussels suffer a die-off, very likely provoked by the protozoan Haplosporidium pinnae. Population dynamic surveys, rescue programmes, larvae collector installation and protection of infected adults from predators, have increased knowledge about the factors conditioning the spread of the die-off; previous model simulations indicate that water temperature and salinity seem to be related to the manifestation of the disease, which at the end are strongly influenced by climate change and anthropogenic actions. The absence of natural recruitment implies that fan mussel populations are not recovering, but the survival of populations living in paralic environments provides an opportunity to study the disease and its conditioning factors. The present situation is proposed as an example of what is to come in the global context of climate change and poses several questions: are we the witnesses of the potential extinction of a sentinel species? Can we avoid the potential extinction of this species by applying active measures, and which measures will be more effective? How many other more overlooked species might experience a massive and unnoticed die-off before it is too late to implement any preservation action? For the extinction of community structure species will provoke unpredicted ecological cascade effects with global implications.
A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.