The main aim of this work is devoted to studying the existence of compact spherical systems representing anisotropic matter distributions within the scenario of alternative theories of gravitation, specifically f (R, T) gravity theory. Besides, a noteworthy and achievable choice on the formulation of f (R, T) gravity is made. To provide the complete set of field equations for the anisotropic matter distribution, it is considered that the functional form of f (R, T) as f (R, T) = R +2χ T , where R and T correspond to scalar curvature and trace of the stress-energy tensor, respectively. Following the embedding class one approach employing the Eisland condition to get a full space-time portrayal interior the astrophysical structure. When the space-time geometry is identified, we construct a suitable anisotropic model by using a new gravitational potential g rr which often yields physically motivated solutions that describe the anisotropic matter distribution interior the astrophysical system. The physical availability of the obtained model, represents the physical characteristics of the solution is affirmed by performing several physical tests. It merits referencing that with the help of the observed mass values for six compact stars, we have predicted the exact radii for different values of χ-coupling parameter. From this one can convince that the solution predicted the radii in good agreement with the observed values. Since the radius of MSP J0740+6620, the most massive neutron star observed yet is still unknown, we have predicted its radii for different values of χ-coupling parameter. These predicted radii exhibit a monotonic diminishing nature as the a e-mail:
We present an exact solution that could describe compact star composed of color-flavor locked (CFL) phase. Einstein’s field equations were solved through CFL equation of state (EoS) along with a specific form of [Formula: see text] metric potential. Further, to explore a generalized solution we have also included pressure anisotropy. The solution is then analyzed by varying the color superconducting gap [Formula: see text] and its effects on the physical parameters. The stability of the solution through various criteria is also analyzed. To show the physical validity of the obtained solution we have generated the [Formula: see text] curve and fitted three well-known compact stars. This work shows that the anisotropy of the pressure at the interior increases with the color superconducting gap leading to decrease in adiabatic index closer to the critical limit. Further, the fluctuating range of mass due to the density perturbation is larger for lower color superconducting gap leading to more stable configuration.
We provide a 2-fluid immiscible matter source that supplies fuel to construct wormhole spacetime. The exact wormhole solutions are found in the model having, besides real matter or ordinary matter, some quintessence matter along with charge distribution. We intend to derive a general metric of a charged wormhole under some density profiles of galaxies that is also consistent with the observational profile of rotation curve of galaxies. We have shown that the effective mass remains positive as well as the wormhole physics violate the null energy conditions. Some physical features are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.