We analyze here 7 very first strains of OMICRON the SARS-CoV2 new variant from South Africa, the USA (California and Minesota), Canada and Belgium. We applied, at the scale of the whole genome and the spike gene, the biomathematics method of Fibonacci meta-structure fractal analysis applied to the UA / CG proportions. We have evidenced the RUPTURE of OMICRON with respect to ALL the previous variants: D614G, ALPHA, BETA, GAMMA, DELTA. Remarkably, it is observed that the density of OMICRON mutations in the SPIKE PRION region is more than 8 times that of the rest of the Spike protein. In particular, we suggest that the mRNA stabilizing secondary structure ("hairpin" conformation) in the spike of all variants is degraded in OMICRON, probably making its mRNA more fragile. The loss of long-range fractal meta-structures in the OMICRON spike gene are in line with common knowledge on the mechanisms of epidemic ending, involving recombination of heavily mutated RNA fragments of the virus, with the possible inference of a distinct helper virus. This would indicate that the SARS-CoV2 is under very strong evolutionary pressure, possibly marking the end of the pandemic. We are studying more particularly the prion-like region of the spike, the mutations rate of which is 8 times higher in OMICRON than that of the whole spike protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.