Transverse and longitudinal relaxation times (T1ρ and T1) have been widely exploited in NMR to probe the binding of ligands and putative drugs to target proteins. We have shown recently that long-lived states (LLS) can be more sensitive to ligand binding. LLS can be excited if the ligand comprises at least two coupled spins. Herein we broaden the scope of ligand screening by LLS to arbitrary ligands by covalent attachment of a functional group, which comprises a pair of coupled protons that are isolated from neighboring magnetic nuclei. The resulting functionalized ligands have longitudinal relaxation times T1(1H) that are sufficiently long to allow the powerful combination of LLS with dissolution dynamic nuclear polarization (D-DNP). Hyperpolarized weak “spy ligands” can be displaced by high-affinity competitors. Hyperpolarized LLS allow one to decrease both protein and ligand concentrations to micromolar levels and to significantly increase sample throughput.
We introduce a technique to rapidly generate summed-area tables using graphics hardware. Summed area tables, originally introduced by Crow, provide a way to filter arbitrarily large rectangular regions of an image in a constant amount of time. Our algorithm for generating summed-area tables, similar to a technique used in scientific computing called recursive doubling, allows the generation of a summed-area table in O(log n) time. We also describe a technique to mitigate the precision requirements of summed-area tables. The ability to calculate and use summed-area tables at interactive rates enables numerous interesting rendering effects. We present several possible applications. First, the use of summed-area tables allows real-time rendering of interactive, glossy environmental reflections. Second, we present glossy planar reflections with varying blurriness dependent on a reflected object's distance to the reflector. Third, we show a technique that uses a summed-area table to render glossy transparent objects. The final application demonstrates an interactive depth-of-field effect using summedarea tables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.