Although thermal performance is widely recognised to be pivotal in determining species' distributions, assessment of this performance is often based on laboratory-acclimated individuals, neglecting their proximate thermal history. The thermal history of a species sums the evolutionary history and, importantly, the thermal events recently experienced by individuals, including short-term acclimation to environmental variations. Thermal history is perhaps of greatest importance for species inhabiting thermally challenging environments and therefore assumed to be living close to their thermal limits, such as in the tropics. To test the importance of thermal history, the responses of the tropical oyster Isognomon nucleus to short-term differences in thermal environments were investigated. Critical and lethal temperatures and oxygen consumption were improved in oysters that previously experienced elevated air temperatures, and were associated with an enhanced heat shock response, indicating that recent thermal history affects physiological performance as well as inducing short-term acclimation to acute conditions. These responses were, however, associated with tradeoffs in feeding activity, with oysters that experienced elevated temperatures showing reduced energy gain. Recent thermal history, therefore, seems to rapidly invoke physiological mechanisms that enhance survival of short-term thermal challenge but also longer term climatic changes and consequently needs to be incorporated into assessments of species' thermal performances.
Potential future distribution shifts of intertidal invertebrates along the Asian coast in the face of global change remain unclear. Integrative study that comprise environmental temperature monitoring and comparative physiological study of thermal adaptation among different geographical populations of species are important to identify population-related differences in thermal ecology that could affect the persistence of species in their present distribution ranges. In the present study, in situ operative temperatures were recorded continuously for 5 mo from August 2011 to January 2012, and measurements of lethal temperature, cardiac performance and gene expression were carried out in 3 geographical populations of the limpet Cellana toreuma (tropical shore: Sichang Island, Thailand; subtropical shore: Nanding Island, Zhangzhou, China; temperate shore: Dagong Island, Qingdao, China). Compared to limpets on the tropical shore in Sichang Island with high mean temperature (28.28°C) and narrow thermal range (19.13 to 46.56°C), limpets on the subtropical shore in Nanding Island have to cope with a thermal environment characterized by a wider temperature range (6.42 to 44.98°C). The absence of differences in lethal temperature (LT 50) of limpets from all the locations indicates that limpets currently suffer from intensive heat stress across their biogeographic range. Although the populations lacked differences in upper thermal limit, variations were noted among populations in transcriptional responses in genes linked to energy metabolism. Limpets on the subtropical shore in Nanding Island live closer to their upper thermal limits and thus will be very sensitive to future temperature increases.
Anticipatory changes in organismal responses, triggered by reliable environmental cues for future conditions, are key to species' persistence in temporally variable environments. Such responses were tested by measuring the physiological performance of a tropical highshore oyster in tandem with the temporal predictability of environmental temperature. Heart rate of the oyster increased with environmental temperatures until body temperature reached ∼377C, when a substantial depression occurred (∼60%) before recovery between ∼427 and 477C, after which cardiac function collapsed. The sequential increase, depression, and recovery in cardiac performance aligned with temporal patterns in rock surface temperatures, where the risk of reaching temperatures close to the oysters' lethal limit accelerates if the rock heats up beyond ∼377C, coinciding closely with the body temperature at which the oysters initiate metabolic depression. The increase in body temperature over a critical threshold serves as an early-warning cue to initiate anticipatory shifts in physiology and energy conservation before severe thermal stress occurs on the shore. Cross-correlating the onset of physiological mechanisms and temporal structures in environmental temperatures, therefore, reveals the potential role of reliable real-time environmental cues for future conditions in driving the evolution of anticipatory responses.
BackgroundGastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms.ResultsUsing Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI’s non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes. With these data we developed AmpuBase, a relational database that features online BLAST functionality for DNA/protein sequences, keyword searching for unigenes/functional terms, and download functions for sequences and whole transcriptomes.ConclusionsIn summary, we have generated comprehensive transcriptome data for multiple ampullariid genera and species, and created a publicly accessible database with a user-friendly interface to facilitate future basic and applied studies on ampullariids, and comparative molecular studies with other invertebrates.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4553-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.