LIFE BAETULO (www.life-BAETULO.eu) ha sido un proyecto piloto de adaptación al cambio climático liderado por AQUATEC y con presupuesto de 1.2 millones de euros, financiado por la Comisión Europea en el marco del programa LIFE Climate Action. El objetivo del proyecto ha sido el desarrollo y la implementación de un sistema de Alerta Temprana Integral Multirriesgo en la ciudad de Badalona para reducir la exposición y la vulnerabilidad de los ciudadanos frente a los eventos climáticos. La duración de LIFE BAETULO ha sido de dos años y medio (Julio 2020 - Diciembre 2022). Tanto la fase de desarrollo como de implementación han contado con la participación de diferentes entidades como el Ayuntamiento de Badalona, el Área Metropolitana de Barcelona y Aigües de Barcelona, también socios del proyecto. Los principales peligros climáticos que permite gestionar el sistema de alerta integral son las inundaciones pluviales urbanas, los desbordamientos del sistema de saneamiento (DSS) (estas dos amenazas principalmente tratadas en este artículo), los temporales marítimos, las olas de calor y de frío, las nevadas, los temporales de viento, los incendios forestales y los episodios de contaminación atmosférica. El proyecto ha proporcionado un sistema capaz de detectar de manera temprana dichos eventuales peligros climáticos y ayudar en la gestión de eventos de crisis asociados a su ocurrencia. Como colofón al proyecto se ha desarrollado también una aplicación móvil como canal de comunicación del sistema con la ciudadanía, operadores y otros actores locales involucrados. BAETULO adopta un enfoque multirriesgo, en contraste con las soluciones sectoriales clásicas que se enfocan en un solo peligro a la vez. Este artículo describe los objetivos del proyecto, la arquitectura de la solución, la metodología de validación y los beneficios para la ciudad de Badalona.
Abstract. As Europe is faced with increasing droughts and extreme precipitation, countries are taking measures to adapt to these changes. It is challenging, however, to navigate through the wide range of possible measures, taking into account the efficacy, economic impact and social justice aspects of these measures, as well as the governance requirements for implementing them. This article presents the approach of selecting and analysing adaptation measures to increasing extreme weather events caused by ongoing climate change that was developed and applied in the H2020 project BINGO (Bringing Innovation to Ongoing Water Management). The purpose of this project is (a) to develop an integrated participatory approach for selecting and evaluating adaptation measures, (b) to apply and evaluate the approach across six case-study river basins across Europe, and (c) to support decision-making towards adaptation capturing the diversity, the different circumstances and challenges river basins face across Europe. It combines three analyses: governance, socio-economic and social justice The governance analysis focuses on the requirements associated with the measures and the extent to which these requirements are met at the research sites. The socio-economic impact focuses on the efficacy of the measures in reducing the risks and the broad range of tools available to compare the measures on their societal impact. Finally, a tentative social justice analysis focuses on the distributive impacts of the adaptation measures. In the summary of results, we give an overview of the outcome of the different analyses. In the conclusion, we briefly assess the main pros and cons of the different analyses that were conducted. The main conclusion is that although the research sites were very different in both the challenges and the institutional context, the approach presented here yielded decision-relevant outcomes.
Abstract. As Europe is faced with increasing droughts and extreme precipitation, countries are taking measures to adapt to these changes. It is challenging, however, to navigate through the wide range of possible measures, taking into account the efficacy, economic impact and social justice aspects of these measures, as well as the governance requirements for implementing them. This article describes and evaluates an approach to selecting and analysing climate change adaptation measures that was applied at six research sites across Europe. It describes the steps that were taken in collecting, selecting and analysing adaptation measures, in a process with local stakeholders, with concrete examples from the case studies. The governance analysis focuses on the requirements associated with the measures and the extent to which these requirements are met at the research sites. The socio-economic impact focuses on the efficacy of the measures in reducing the risks and the broad range of tools available to compare the measures on their societal impact. Finally, the social justice analysis focuses on the distributive impacts of the adaptation measures. In the discussion, we identify some key findings with regard to the different kind of measures. In the conclusion we briefly assess the main pros and cons of the different analyses that were conducted. The main conclusion is that although the research sites were very different in both the challenges and the institutional context, the approach presented here yielded decision relevant outcomes.
LIFE BAETULO (www.life-baetulo.eu) is a European pilot project funded by the EU LIFE Climate Action programme, coordinated by AQUATEC (AGBAR Group) and with a duration of 2.5 years (from July 2020 to December 2022). The main project solution (an Integrated Early Warning System, IEWS) is implemented as a technical and adaptive means to reduce exposure and vulnerability of urban assets and citizens to climate change. IEWS considers major climate change-induced hazards such as floods, combined sewer overflows (CSOs), storm surges, heatwaves, cold waves, snowfalls, windstorms, air pollution and forest fires. The IEWS platform is built on top of existing infrastructure such as meteorological and weather services, drainage infrastructure monitoring systems and official information channels. It is a multi-risk approach, in contrast with classic sectorial solutions which focus on just one hazard at a time. This paper describes the objectives of the project, the architecture of the IEWS, the methodology used for its validation and the expected results and benefits for the city of Badalona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.