Abstract-This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentationoriented features. The algorithm follows a Top-Down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem.Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.
Abstract-This paper presents a generic video coding algorithm allowing the content-based manipulation of objects. This manipulation is possible thanks to the definition of a spatiotemporal segmentation of the sequences. The coding strategy relies on a joint optimization in the rate-distortion sense of the partition definition and of the coding techniques to be used within each region. This optimization creates the link between the analysis and synthesis parts of the coder. The analysis defines the time evolution of the partition, as well as the elimination or the appearance of regions that are homogeneous either spatially or in motion. The coding of the texture as well as of the partition relies on region-based motion compensation techniques. The algorithm offers a good compromise between the ability to track and manipulate objects and the coding efficiency.
Abstract-This paper deals with the use of some morphological tools for image and video coding. Mathematical morphology can be considered as a shape-oriented approach to signal processing, and some of its features make it very useful for compression. Rather than describing a coding algorithm, the purpose of this paper is to describe some morphological tools that have recently proved to be attractive for compression. Four sets of morphological transformations are presented: connected operators, the region-growing version of the watershed, the geodesic skeleton, and a morphological interpolation technique. Their implementation will be discussed, and we will show how they can be used for image and video segmentation, contour coding, and texture coding.
Semantic segmentation and depth estimation are two important tasks in computer vision, and many methods have been developed to tackle them. Commonly these two tasks are addressed independently, but recently the idea of merging these two problems into a sole framework has been studied under the assumption that integrating two highly correlated tasks may benefit each other to improve the estimation accuracy. In this paper, depth estimation and semantic segmentation are jointly addressed using a single RGB input image under a unified convolutional neural network. We analyze two different architectures to evaluate which features are more relevant when shared by the two tasks and which features should be kept separated to achieve a mutual improvement. Likewise, our approaches are evaluated under two different scenarios designed to review our results versus single-task and multi-task methods. Qualitative and quantitative experiments demonstrate that the performance of our methodology outperforms the state of the art on single-task approaches, while obtaining competitive results compared with other multi-task methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.